Calcolo Esempi

Trovare i Punti di Flesso (x^2)/2- logaritmo naturale di x
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2.3
e .
Passaggio 2.1.2.4
e .
Passaggio 2.1.2.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.1.2.5.1
Elimina il fattore comune.
Passaggio 2.1.2.5.2
Dividi per .
Passaggio 2.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
La derivata di rispetto a è .
Passaggio 2.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.2.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.2.2
Riscrivi come .
Passaggio 2.2.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.5
Moltiplica per .
Passaggio 2.2.2.6
Moltiplica per .
Passaggio 2.2.2.7
Moltiplica per .
Passaggio 2.2.2.8
Somma e .
Passaggio 2.2.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.2.4
Riordina i termini.
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.3
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 3.3.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 3.3.2
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 3.4
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 3.4.1
Moltiplica ogni termine in per .
Passaggio 3.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.4.2.1.1
Elimina il fattore comune.
Passaggio 3.4.2.1.2
Riscrivi l'espressione.
Passaggio 3.5
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 3.5.1
Riscrivi l'equazione come .
Passaggio 3.5.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.5.2.1
Dividi per ciascun termine in .
Passaggio 3.5.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.5.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 3.5.2.2.2
Dividi per .
Passaggio 3.5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.5.2.3.1
Dividi per .
Passaggio 3.5.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.5.4
Riscrivi come .
Passaggio 3.5.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 3.5.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.5.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.5.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Non è stato trovato alcun valore in grado di rendere la derivata seconda uguale a .
Nessun punto di flesso