Calcolo Esempi

Trovare Dove è Crescente/Decrescente Usando le Derivate 3x^4-16x^3+24x^2
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2.3
Moltiplica per .
Passaggio 2.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.3.3
Moltiplica per .
Passaggio 2.1.4
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.4.3
Moltiplica per .
Passaggio 2.2
La derivata prima di rispetto a è .
Passaggio 3
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Poni la derivata prima uguale a .
Passaggio 3.2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 3.2.1.1
Scomponi da .
Passaggio 3.2.1.2
Scomponi da .
Passaggio 3.2.1.3
Scomponi da .
Passaggio 3.2.1.4
Scomponi da .
Passaggio 3.2.1.5
Scomponi da .
Passaggio 3.2.2
Scomponi usando la regola del quadrato perfetto.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Riscrivi come .
Passaggio 3.2.2.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 3.2.2.3
Riscrivi il polinomio.
Passaggio 3.2.2.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 3.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.4
Imposta uguale a .
Passaggio 3.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.5.1
Imposta uguale a .
Passaggio 3.5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.5.2.1
Poni uguale a .
Passaggio 3.5.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
I valori che rendono la derivata uguale a sono .
Passaggio 5
Dividi in intervalli separati intorno ai valori che rendono la derivata o indefinita.
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Eleva alla potenza di .
Passaggio 6.2.1.4
Moltiplica per .
Passaggio 6.2.1.5
Moltiplica per .
Passaggio 6.2.2
Semplifica sottraendo i numeri.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Sottrai da .
Passaggio 6.2.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 7.2.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Uno elevato a qualsiasi potenza è uno.
Passaggio 7.2.1.4
Moltiplica per .
Passaggio 7.2.1.5
Moltiplica per .
Passaggio 7.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 7.2.2.1
Sottrai da .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 8
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 8.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 8.2.1.1
Eleva alla potenza di .
Passaggio 8.2.1.2
Moltiplica per .
Passaggio 8.2.1.3
Eleva alla potenza di .
Passaggio 8.2.1.4
Moltiplica per .
Passaggio 8.2.1.5
Moltiplica per .
Passaggio 8.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 8.2.2.1
Sottrai da .
Passaggio 8.2.2.2
Somma e .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 9
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 10