Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
La derivata di rispetto a è .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Dividi per .
Passaggio 2.4
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.5
Semplifica il lato destro.
Passaggio 2.5.1
Il valore esatto di è .
Passaggio 2.6
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.7
Semplifica .
Passaggio 2.7.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.7.2
Riduci le frazioni.
Passaggio 2.7.2.1
e .
Passaggio 2.7.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 2.7.3
Semplifica il numeratore.
Passaggio 2.7.3.1
Sposta alla sinistra di .
Passaggio 2.7.3.2
Sottrai da .
Passaggio 2.8
Trova il periodo di .
Passaggio 2.8.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.8.2
Sostituisci con nella formula per il periodo.
Passaggio 2.8.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.8.4
Dividi per .
Passaggio 2.9
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Dopo aver trovato il punto che rende la derivata uguale a o indefinita, l'intervallo per verificare dove è crescente e dove è decrescente corrisponde a .
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
La risposta finale è .
Passaggio 5.3
Semplifica.
Passaggio 5.4
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
La risposta finale è .
Passaggio 6.3
Semplifica.
Passaggio 6.4
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 7
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Decrescente su:
Passaggio 8