Calcolo Esempi

Valutare Utilizzando la Regola di L'Hospital limite per x tendente a infinity di (6x)/(15x-8)
Passaggio 1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Il limite all'infinito di un polinomio il cui coefficiente direttivo è più infinito.
Passaggio 1.3
Il limite all'infinito di un polinomio il cui coefficiente direttivo è più infinito.
Passaggio 1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.4
Moltiplica per .
Passaggio 3.5
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.6
Calcola .
Tocca per altri passaggi...
Passaggio 3.6.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.6.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.6.3
Moltiplica per .
Passaggio 3.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.8
Somma e .
Passaggio 4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.1
Scomponi da .
Passaggio 4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.2.1
Scomponi da .
Passaggio 4.2.2
Elimina il fattore comune.
Passaggio 4.2.3
Riscrivi l'espressione.
Passaggio 5
Calcola il limite di che è costante, mentre tende a .