Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.1.2
La derivata di rispetto a è .
Passaggio 1.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4
Moltiplica per .
Passaggio 1.3.5
Sposta alla sinistra di .
Passaggio 2
Passaggio 2.1
Differenzia.
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2.2
La derivata di rispetto a è .
Passaggio 2.2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.5
Moltiplica per .
Passaggio 2.2.6
Moltiplica per .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.3
Sottrai da .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Sottrai da entrambi i lati dell'equazione.
Passaggio 5
Passaggio 5.1
Dividi per ciascun termine in .
Passaggio 5.2
Semplifica il lato sinistro.
Passaggio 5.2.1
Elimina il fattore comune di .
Passaggio 5.2.1.1
Elimina il fattore comune.
Passaggio 5.2.1.2
Dividi per .
Passaggio 5.3
Semplifica il lato destro.
Passaggio 5.3.1
Dividi per .
Passaggio 6
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 7
Passaggio 7.1
Il valore esatto di è .
Passaggio 8
Passaggio 8.1
Dividi per ciascun termine in .
Passaggio 8.2
Semplifica il lato sinistro.
Passaggio 8.2.1
Elimina il fattore comune di .
Passaggio 8.2.1.1
Elimina il fattore comune.
Passaggio 8.2.1.2
Dividi per .
Passaggio 9
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 10
Passaggio 10.1
Sottrai da .
Passaggio 10.2
Dividi per ciascun termine in e semplifica.
Passaggio 10.2.1
Dividi per ciascun termine in .
Passaggio 10.2.2
Semplifica il lato sinistro.
Passaggio 10.2.2.1
Elimina il fattore comune di .
Passaggio 10.2.2.1.1
Elimina il fattore comune.
Passaggio 10.2.2.1.2
Dividi per .
Passaggio 11
La soluzione dell'equazione .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Passaggio 13.1
Elimina il fattore comune di .
Passaggio 13.1.1
Elimina il fattore comune.
Passaggio 13.1.2
Riscrivi l'espressione.
Passaggio 13.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante.
Passaggio 13.3
Il valore esatto di è .
Passaggio 13.4
Moltiplica per .
Passaggio 14
Passaggio 14.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 14.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 14.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 14.2.2
Semplifica il risultato.
Passaggio 14.2.2.1
Semplifica ciascun termine.
Passaggio 14.2.2.1.1
Moltiplica per .
Passaggio 14.2.2.1.2
Il valore esatto di è .
Passaggio 14.2.2.1.3
Moltiplica per .
Passaggio 14.2.2.2
Somma e .
Passaggio 14.2.2.3
La risposta finale è .
Passaggio 14.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 14.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 14.3.2
Semplifica il risultato.
Passaggio 14.3.2.1
Semplifica ciascun termine.
Passaggio 14.3.2.1.1
Moltiplica per .
Passaggio 14.3.2.1.2
Calcola .
Passaggio 14.3.2.1.3
Moltiplica per .
Passaggio 14.3.2.2
Sottrai da .
Passaggio 14.3.2.3
La risposta finale è .
Passaggio 14.4
Poiché la derivata prima non ha cambiato segno intorno a , non si tratta né di un minimo né di un massimo locale.
Non è un minimo o un massimo locale
Passaggio 14.5
Nessun massimo o minimo locale trovato per .
Nessun massimo o minimo locale
Nessun massimo o minimo locale
Passaggio 15