Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.2.2
La derivata di rispetto a è .
Passaggio 1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.4
Moltiplica per .
Passaggio 1.3
La derivata di rispetto a è .
Passaggio 1.4
Raccogli i termini.
Passaggio 1.4.1
Sottrai da .
Passaggio 1.4.2
Somma e .
Passaggio 2
Passaggio 2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2
La derivata di rispetto a è .
Passaggio 2.3
Differenzia usando la regola della potenza.
Passaggio 2.3.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.2
Semplifica l'espressione.
Passaggio 2.3.2.1
Moltiplica per .
Passaggio 2.3.2.2
Riordina i termini.
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5
Imposta uguale a .
Passaggio 6
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Passaggio 6.2.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 6.2.2
Semplifica il lato destro.
Passaggio 6.2.2.1
Il valore esatto di è .
Passaggio 6.2.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 6.2.4
Semplifica .
Passaggio 6.2.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.2.4.2
Riduci le frazioni.
Passaggio 6.2.4.2.1
e .
Passaggio 6.2.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 6.2.4.3
Semplifica il numeratore.
Passaggio 6.2.4.3.1
Moltiplica per .
Passaggio 6.2.4.3.2
Sottrai da .
Passaggio 6.2.5
La soluzione dell'equazione .
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Il valore esatto di è .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Il valore esatto di è .
Passaggio 9.2
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Passaggio 11.2.1
Semplifica ciascun termine.
Passaggio 11.2.1.1
Il valore esatto di è .
Passaggio 11.2.1.2
Moltiplica per .
Passaggio 11.2.1.3
Il valore esatto di è .
Passaggio 11.2.2
Somma e .
Passaggio 11.2.3
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Passaggio 13.1
Semplifica ciascun termine.
Passaggio 13.1.1
Il valore esatto di è .
Passaggio 13.1.2
Moltiplica per .
Passaggio 13.1.3
Il valore esatto di è .
Passaggio 13.2
Somma e .
Passaggio 14
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 15
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Passaggio 15.2.1
Semplifica ciascun termine.
Passaggio 15.2.1.1
Il valore esatto di è .
Passaggio 15.2.1.2
Moltiplica per .
Passaggio 15.2.1.3
Il valore esatto di è .
Passaggio 15.2.2
Somma e .
Passaggio 15.2.3
La risposta finale è .
Passaggio 16
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 17
Passaggio 17.1
Semplifica ciascun termine.
Passaggio 17.1.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il seno è negativo nel quarto quadrante.
Passaggio 17.1.2
Il valore esatto di è .
Passaggio 17.1.3
Moltiplica per .
Passaggio 17.1.4
Moltiplica .
Passaggio 17.1.4.1
Moltiplica per .
Passaggio 17.1.4.2
Moltiplica per .
Passaggio 17.1.5
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante.
Passaggio 17.1.6
Il valore esatto di è .
Passaggio 17.2
Somma e .
Passaggio 18
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 19
Passaggio 19.1
Sostituisci la variabile con nell'espressione.
Passaggio 19.2
Semplifica il risultato.
Passaggio 19.2.1
Semplifica ciascun termine.
Passaggio 19.2.1.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il seno è negativo nel quarto quadrante.
Passaggio 19.2.1.2
Il valore esatto di è .
Passaggio 19.2.1.3
Moltiplica per .
Passaggio 19.2.1.4
Moltiplica .
Passaggio 19.2.1.4.1
e .
Passaggio 19.2.1.4.2
Moltiplica per .
Passaggio 19.2.1.5
Sposta il negativo davanti alla frazione.
Passaggio 19.2.1.6
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante.
Passaggio 19.2.1.7
Il valore esatto di è .
Passaggio 19.2.2
Somma e .
Passaggio 19.2.3
La risposta finale è .
Passaggio 20
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
è un minimo locale
Passaggio 21