Calcolo Esempi

Trovare i Massimi e i Minimi Locali x radice cubica di x-6
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Usa per riscrivere come .
Passaggio 2.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.5
e .
Passaggio 2.6
Riduci i numeratori su un comune denominatore.
Passaggio 2.7
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.7.1
Moltiplica per .
Passaggio 2.7.2
Sottrai da .
Passaggio 2.8
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 2.8.1
Sposta il negativo davanti alla frazione.
Passaggio 2.8.2
e .
Passaggio 2.8.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 2.8.4
e .
Passaggio 2.9
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.10
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.11
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.12
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.12.1
Somma e .
Passaggio 2.12.2
Moltiplica per .
Passaggio 2.13
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.14
Moltiplica per .
Passaggio 2.15
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.16
e .
Passaggio 2.17
Riduci i numeratori su un comune denominatore.
Passaggio 2.18
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.18.1
Sposta .
Passaggio 2.18.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.18.3
Riduci i numeratori su un comune denominatore.
Passaggio 2.18.4
Somma e .
Passaggio 2.18.5
Dividi per .
Passaggio 2.19
Semplifica .
Passaggio 2.20
Sposta alla sinistra di .
Passaggio 2.21
Semplifica.
Tocca per altri passaggi...
Passaggio 2.21.1
Applica la proprietà distributiva.
Passaggio 2.21.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.21.2.1
Moltiplica per .
Passaggio 2.21.2.2
Somma e .
Passaggio 2.21.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.21.3.1
Scomponi da .
Passaggio 2.21.3.2
Scomponi da .
Passaggio 2.21.3.3
Scomponi da .
Passaggio 3
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 3.3
Differenzia.
Tocca per altri passaggi...
Passaggio 3.3.1
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 3.3.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 3.3.1.2.1
e .
Passaggio 3.3.1.2.2
Moltiplica per .
Passaggio 3.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.5
Moltiplica per .
Passaggio 3.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.7
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 3.3.7.1
Somma e .
Passaggio 3.3.7.2
Sposta alla sinistra di .
Passaggio 3.4
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 3.4.1
Per applicare la regola della catena, imposta come .
Passaggio 3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.5
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.6
e .
Passaggio 3.7
Riduci i numeratori su un comune denominatore.
Passaggio 3.8
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 3.8.1
Moltiplica per .
Passaggio 3.8.2
Sottrai da .
Passaggio 3.9
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 3.9.1
Sposta il negativo davanti alla frazione.
Passaggio 3.9.2
e .
Passaggio 3.9.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 3.10
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.11
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.12
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.13
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 3.13.1
Somma e .
Passaggio 3.13.2
Moltiplica per .
Passaggio 3.13.3
Moltiplica per .
Passaggio 3.14
Semplifica.
Tocca per altri passaggi...
Passaggio 3.14.1
Applica la proprietà distributiva.
Passaggio 3.14.2
Applica la proprietà distributiva.
Passaggio 3.14.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 3.14.3.1
Moltiplica per .
Passaggio 3.14.3.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.14.3.2.1
Moltiplica per .
Passaggio 3.14.3.2.2
Moltiplica per .
Passaggio 3.14.3.3
Moltiplica per .
Passaggio 3.14.3.4
Sposta alla sinistra di .
Passaggio 3.14.3.5
Moltiplica .
Tocca per altri passaggi...
Passaggio 3.14.3.5.1
e .
Passaggio 3.14.3.5.2
Moltiplica per .
Passaggio 3.14.3.6
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.14.3.7
e .
Passaggio 3.14.3.8
Riduci i numeratori su un comune denominatore.
Passaggio 3.14.3.9
Riscrivi in una forma fattorizzata.
Tocca per altri passaggi...
Passaggio 3.14.3.9.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 3.14.3.9.1.1
Scomponi da .
Passaggio 3.14.3.9.1.2
Scomponi da .
Passaggio 3.14.3.9.2
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 3.14.3.9.3
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 3.14.3.9.3.1
Sposta .
Passaggio 3.14.3.9.3.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.14.3.9.3.3
Riduci i numeratori su un comune denominatore.
Passaggio 3.14.3.9.3.4
Somma e .
Passaggio 3.14.3.9.3.5
Dividi per .
Passaggio 3.14.3.9.4
Semplifica .
Passaggio 3.14.3.9.5
Applica la proprietà distributiva.
Passaggio 3.14.3.9.6
Moltiplica per .
Passaggio 3.14.3.9.7
Sottrai da .
Passaggio 3.14.3.9.8
Somma e .
Passaggio 3.14.4
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 3.14.4.1
Riscrivi come un prodotto.
Passaggio 3.14.4.2
Moltiplica per .
Passaggio 3.14.4.3
Moltiplica per .
Passaggio 3.14.4.4
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 3.14.4.4.1
Sposta .
Passaggio 3.14.4.4.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.14.4.4.3
Riduci i numeratori su un comune denominatore.
Passaggio 3.14.4.4.4
Somma e .
Passaggio 4
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 5
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 5.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 5.1.1
Usa per riscrivere come .
Passaggio 5.1.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 5.1.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 5.1.3.1
Per applicare la regola della catena, imposta come .
Passaggio 5.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 5.1.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.1.5
e .
Passaggio 5.1.6
Riduci i numeratori su un comune denominatore.
Passaggio 5.1.7
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.1.7.1
Moltiplica per .
Passaggio 5.1.7.2
Sottrai da .
Passaggio 5.1.8
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 5.1.8.1
Sposta il negativo davanti alla frazione.
Passaggio 5.1.8.2
e .
Passaggio 5.1.8.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 5.1.8.4
e .
Passaggio 5.1.9
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.10
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.11
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.12
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 5.1.12.1
Somma e .
Passaggio 5.1.12.2
Moltiplica per .
Passaggio 5.1.13
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.14
Moltiplica per .
Passaggio 5.1.15
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.1.16
e .
Passaggio 5.1.17
Riduci i numeratori su un comune denominatore.
Passaggio 5.1.18
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 5.1.18.1
Sposta .
Passaggio 5.1.18.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 5.1.18.3
Riduci i numeratori su un comune denominatore.
Passaggio 5.1.18.4
Somma e .
Passaggio 5.1.18.5
Dividi per .
Passaggio 5.1.19
Semplifica .
Passaggio 5.1.20
Sposta alla sinistra di .
Passaggio 5.1.21
Semplifica.
Tocca per altri passaggi...
Passaggio 5.1.21.1
Applica la proprietà distributiva.
Passaggio 5.1.21.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.1.21.2.1
Moltiplica per .
Passaggio 5.1.21.2.2
Somma e .
Passaggio 5.1.21.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.1.21.3.1
Scomponi da .
Passaggio 5.1.21.3.2
Scomponi da .
Passaggio 5.1.21.3.3
Scomponi da .
Passaggio 5.2
La derivata prima di rispetto a è .
Passaggio 6
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 6.1
Poni la derivata prima uguale a .
Passaggio 6.2
Poni il numeratore uguale a zero.
Passaggio 6.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 6.3.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.3.1.1
Dividi per ciascun termine in .
Passaggio 6.3.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.3.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.3.1.2.1.1
Elimina il fattore comune.
Passaggio 6.3.1.2.1.2
Dividi per .
Passaggio 6.3.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.3.1.3.1
Dividi per .
Passaggio 6.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 6.3.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.3.3.1
Dividi per ciascun termine in .
Passaggio 6.3.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.3.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.3.3.2.1.1
Elimina il fattore comune.
Passaggio 6.3.3.2.1.2
Dividi per .
Passaggio 7
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 7.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 7.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 7.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 7.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 7.3.2
Semplifica ogni lato dell'equazione.
Tocca per altri passaggi...
Passaggio 7.3.2.1
Usa per riscrivere come .
Passaggio 7.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 7.3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 7.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 7.3.2.2.1.2
Eleva alla potenza di .
Passaggio 7.3.2.2.1.3
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 7.3.2.2.1.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 7.3.2.2.1.3.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 7.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 7.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 7.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 7.3.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 7.3.3.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 7.3.3.1.1
Dividi per ciascun termine in .
Passaggio 7.3.3.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 7.3.3.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.3.3.1.2.1.1
Elimina il fattore comune.
Passaggio 7.3.3.1.2.1.2
Dividi per .
Passaggio 7.3.3.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 7.3.3.1.3.1
Dividi per .
Passaggio 7.3.3.2
Poni uguale a .
Passaggio 7.3.3.3
Somma a entrambi i lati dell'equazione.
Passaggio 8
Punti critici da calcolare.
Passaggio 9
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 10
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 10.1
Scomponi da .
Passaggio 10.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 10.2.1
Scomponi da .
Passaggio 10.2.2
Elimina il fattore comune.
Passaggio 10.2.3
Riscrivi l'espressione.
Passaggio 10.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 10.3.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 10.3.2
e .
Passaggio 10.3.3
Riduci i numeratori su un comune denominatore.
Passaggio 10.3.4
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 10.3.4.1
Moltiplica per .
Passaggio 10.3.4.2
Sottrai da .
Passaggio 10.3.5
Sposta il negativo davanti alla frazione.
Passaggio 10.3.6
Raccogli gli esponenti.
Tocca per altri passaggi...
Passaggio 10.3.6.1
Metti in evidenza il valore negativo.
Passaggio 10.3.6.2
e .
Passaggio 10.3.7
Dividi per .
Passaggio 10.4
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 10.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 10.4.2
e .
Passaggio 10.4.3
Riduci i numeratori su un comune denominatore.
Passaggio 10.4.4
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 10.4.4.1
Moltiplica per .
Passaggio 10.4.4.2
Sottrai da .
Passaggio 10.4.5
Sposta il negativo davanti alla frazione.
Passaggio 10.4.6
Usa la regola della potenza per distribuire l'esponente.
Tocca per altri passaggi...
Passaggio 10.4.6.1
Applica la regola del prodotto a .
Passaggio 10.4.6.2
Applica la regola del prodotto a .
Passaggio 10.4.7
Riscrivi come .
Passaggio 10.4.8
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 10.4.9
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.4.9.1
Elimina il fattore comune.
Passaggio 10.4.9.2
Riscrivi l'espressione.
Passaggio 10.4.10
Eleva alla potenza di .
Passaggio 10.5
Moltiplica per .
Passaggio 10.6
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 10.7
Moltiplica .
Tocca per altri passaggi...
Passaggio 10.7.1
Moltiplica per .
Passaggio 10.7.2
e .
Passaggio 10.7.3
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 10.7.3.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 10.7.3.1.1
Eleva alla potenza di .
Passaggio 10.7.3.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 10.7.3.2
Scrivi come una frazione con un comune denominatore.
Passaggio 10.7.3.3
Riduci i numeratori su un comune denominatore.
Passaggio 10.7.3.4
Somma e .
Passaggio 11
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 12
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 12.1
Sostituisci la variabile con nell'espressione.
Passaggio 12.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 12.2.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 12.2.2
e .
Passaggio 12.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 12.2.4
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 12.2.4.1
Moltiplica per .
Passaggio 12.2.4.2
Sottrai da .
Passaggio 12.2.5
Sposta il negativo davanti alla frazione.
Passaggio 12.2.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 12.2.6.1
Riscrivi come .
Passaggio 12.2.6.2
Riscrivi come .
Passaggio 12.2.7
Estrai i termini dal radicale.
Passaggio 12.2.8
Eleva alla potenza di .
Passaggio 12.2.9
Riscrivi come .
Passaggio 12.2.10
Moltiplica per .
Passaggio 12.2.11
Combina e semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 12.2.11.1
Moltiplica per .
Passaggio 12.2.11.2
Eleva alla potenza di .
Passaggio 12.2.11.3
Usa la regola della potenza per combinare gli esponenti.
Passaggio 12.2.11.4
Somma e .
Passaggio 12.2.11.5
Riscrivi come .
Tocca per altri passaggi...
Passaggio 12.2.11.5.1
Usa per riscrivere come .
Passaggio 12.2.11.5.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 12.2.11.5.3
e .
Passaggio 12.2.11.5.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 12.2.11.5.4.1
Elimina il fattore comune.
Passaggio 12.2.11.5.4.2
Riscrivi l'espressione.
Passaggio 12.2.11.5.5
Calcola l'esponente.
Passaggio 12.2.12
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 12.2.12.1
Riscrivi come .
Passaggio 12.2.12.2
Eleva alla potenza di .
Passaggio 12.2.13
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 12.2.13.1
Combina usando la regola del prodotto per i radicali.
Passaggio 12.2.13.2
Moltiplica per .
Passaggio 12.2.14
Moltiplica .
Tocca per altri passaggi...
Passaggio 12.2.14.1
Moltiplica per .
Passaggio 12.2.14.2
Moltiplica per .
Passaggio 12.2.15
La risposta finale è .
Passaggio 13
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 14
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 14.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 14.1.1
Sottrai da .
Passaggio 14.1.2
Riscrivi come .
Passaggio 14.1.3
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 14.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 14.2.1
Elimina il fattore comune.
Passaggio 14.2.2
Riscrivi l'espressione.
Passaggio 14.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 14.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 14.3.2
Moltiplica per .
Passaggio 14.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 14.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Passaggio 15
Poiché c'è almeno un punto con una derivata seconda o indefinita, applica il test della derivata prima.
Tocca per altri passaggi...
Passaggio 15.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 15.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 15.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.2.2.1
Scomponi da .
Passaggio 15.2.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 15.2.2.2.1
Scomponi da .
Passaggio 15.2.2.2.2
Elimina il fattore comune.
Passaggio 15.2.2.2.3
Riscrivi l'espressione.
Passaggio 15.2.2.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 15.2.2.3.1
Moltiplica per .
Passaggio 15.2.2.3.2
Sottrai da .
Passaggio 15.2.2.4
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 15.2.2.4.1
Sottrai da .
Passaggio 15.2.2.4.2
Moltiplica per .
Passaggio 15.2.2.5
Sposta al numeratore usando la regola dell'esponente negativo .
Passaggio 15.2.2.6
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 15.2.2.6.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 15.2.2.6.1.1
Eleva alla potenza di .
Passaggio 15.2.2.6.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 15.2.2.6.2
Scrivi come una frazione con un comune denominatore.
Passaggio 15.2.2.6.3
Riduci i numeratori su un comune denominatore.
Passaggio 15.2.2.6.4
Sottrai da .
Passaggio 15.2.2.7
La risposta finale è .
Passaggio 15.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 15.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.3.2.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 15.3.2.1.1
Moltiplica per .
Passaggio 15.3.2.1.2
Sottrai da .
Passaggio 15.3.2.2
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 15.3.2.2.1
Sottrai da .
Passaggio 15.3.2.2.2
Riscrivi come .
Passaggio 15.3.2.2.3
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 15.3.2.2.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 15.3.2.2.4.1
Elimina il fattore comune.
Passaggio 15.3.2.2.4.2
Riscrivi l'espressione.
Passaggio 15.3.2.2.5
Eleva alla potenza di .
Passaggio 15.3.2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 15.3.2.3.1
Moltiplica per .
Passaggio 15.3.2.3.2
Moltiplica per .
Passaggio 15.3.2.4
La risposta finale è .
Passaggio 15.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 15.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.4.2.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 15.4.2.1.1
Moltiplica per .
Passaggio 15.4.2.1.2
Sottrai da .
Passaggio 15.4.2.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 15.4.2.2.1
Sottrai da .
Passaggio 15.4.2.2.2
Moltiplica per .
Passaggio 15.4.2.3
La risposta finale è .
Passaggio 15.5
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 15.6
Poiché la derivata prima non ha cambiato segno intorno a , non si tratta né di un minimo né di un massimo locale.
Non è un minimo o un massimo locale
Passaggio 15.7
Questi sono gli estremi locali per .
è un minimo locale
è un minimo locale
Passaggio 16