Calcolo Esempi

Trovare i Massimi e i Minimi Locali y=2(1/(sin(x)))
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Converti da a .
Passaggio 2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3
La derivata di rispetto a è .
Passaggio 2.4
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.4.1
Moltiplica per .
Passaggio 2.4.2
Riordina i fattori di .
Passaggio 3
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 3.3
La derivata di rispetto a è .
Passaggio 3.4
Eleva alla potenza di .
Passaggio 3.5
Eleva alla potenza di .
Passaggio 3.6
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.7
Somma e .
Passaggio 3.8
La derivata di rispetto a è .
Passaggio 3.9
Eleva alla potenza di .
Passaggio 3.10
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.11
Somma e .
Passaggio 3.12
Semplifica.
Tocca per altri passaggi...
Passaggio 3.12.1
Applica la proprietà distributiva.
Passaggio 3.12.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 3.12.2.1
Moltiplica per .
Passaggio 3.12.2.2
Moltiplica per .
Passaggio 3.12.3
Riordina i termini.
Passaggio 4
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 5
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.2.1
Trova il valore dell'incognita corrispondente all'inverso della cotangente presente nell'equazione assegnata.
Passaggio 6.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Il valore esatto di è .
Passaggio 6.2.3
La funzione cotangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, aggiungi l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 6.2.4
Semplifica .
Tocca per altri passaggi...
Passaggio 6.2.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.2.4.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 6.2.4.2.1
e .
Passaggio 6.2.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 6.2.4.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.2.4.3.1
Sposta alla sinistra di .
Passaggio 6.2.4.3.2
Somma e .
Passaggio 6.2.5
La soluzione dell'equazione .
Passaggio 7
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 7.1
Imposta uguale a .
Passaggio 7.2
L'intervallo della cosecante è e . Poiché non cade nell'intervallo, non esiste soluzione.
Nessuna soluzione
Nessuna soluzione
Passaggio 8
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 9
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 10
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 10.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 10.1.1
Il valore esatto di è .
Passaggio 10.1.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.1.3
Moltiplica per .
Passaggio 10.1.4
Il valore esatto di è .
Passaggio 10.1.5
Moltiplica per .
Passaggio 10.1.6
Il valore esatto di è .
Passaggio 10.1.7
Uno elevato a qualsiasi potenza è uno.
Passaggio 10.1.8
Moltiplica per .
Passaggio 10.2
Somma e .
Passaggio 11
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 12
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 12.1
Sostituisci la variabile con nell'espressione.
Passaggio 12.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 12.2.1
Il valore esatto di è .
Passaggio 12.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 12.2.2.1
Elimina il fattore comune.
Passaggio 12.2.2.2
Riscrivi l'espressione.
Passaggio 12.2.3
Moltiplica per .
Passaggio 12.2.4
La risposta finale è .
Passaggio 13
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 14
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 14.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 14.1.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché la cotangente è negativa nel quarto quadrante.
Passaggio 14.1.2
Il valore esatto di è .
Passaggio 14.1.3
Moltiplica per .
Passaggio 14.1.4
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 14.1.5
Moltiplica per .
Passaggio 14.1.6
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché la cosecante è negativa nel quarto quadrante.
Passaggio 14.1.7
Il valore esatto di è .
Passaggio 14.1.8
Moltiplica .
Tocca per altri passaggi...
Passaggio 14.1.8.1
Moltiplica per .
Passaggio 14.1.8.2
Moltiplica per .
Passaggio 14.1.9
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché la cosecante è negativa nel quarto quadrante.
Passaggio 14.1.10
Il valore esatto di è .
Passaggio 14.1.11
Moltiplica per .
Passaggio 14.1.12
Eleva alla potenza di .
Passaggio 14.1.13
Moltiplica per .
Passaggio 14.2
Sottrai da .
Passaggio 15
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 16
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 16.1
Sostituisci la variabile con nell'espressione.
Passaggio 16.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 16.2.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 16.2.1.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il seno è negativo nel quarto quadrante.
Passaggio 16.2.1.2
Il valore esatto di è .
Passaggio 16.2.1.3
Moltiplica per .
Passaggio 16.2.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 16.2.2.1
Dividi per .
Passaggio 16.2.2.2
Moltiplica per .
Passaggio 16.2.3
La risposta finale è .
Passaggio 17
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
Passaggio 18