Inserisci un problema...
Calcolo Esempi
Passaggio 1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 2
Passaggio 2.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 2.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.2.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 2.2.2
Semplifica il lato sinistro.
Passaggio 2.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.2.2.2
Dividi per .
Passaggio 2.2.3
Semplifica il lato destro.
Passaggio 2.2.3.1
Dividi per .
Passaggio 2.3
Moltiplica ogni lato per .
Passaggio 2.4
Semplifica.
Passaggio 2.4.1
Semplifica il lato sinistro.
Passaggio 2.4.1.1
Elimina il fattore comune di .
Passaggio 2.4.1.1.1
Elimina il fattore comune.
Passaggio 2.4.1.1.2
Riscrivi l'espressione.
Passaggio 2.4.2
Semplifica il lato destro.
Passaggio 2.4.2.1
Moltiplica per .
Passaggio 2.5
Risolvi per .
Passaggio 2.5.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Passaggio 2.5.2
Semplifica l'equazione.
Passaggio 2.5.2.1
Semplifica il lato sinistro.
Passaggio 2.5.2.1.1
Estrai i termini dal radicale.
Passaggio 2.5.2.2
Semplifica il lato destro.
Passaggio 2.5.2.2.1
Semplifica .
Passaggio 2.5.2.2.1.1
Riscrivi come .
Passaggio 2.5.2.2.1.1.1
Scomponi da .
Passaggio 2.5.2.2.1.1.2
Riscrivi come .
Passaggio 2.5.2.2.1.2
Estrai i termini dal radicale.
Passaggio 3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 4
L'intervallo è l'insieme di tutti i valori validi. Usa il grafico per trovare l'intervallo.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 5
Determina il dominio e l'intervallo.
Dominio:
Intervallo:
Passaggio 6