Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=x^-1+xy-8y^-1
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.4.1
e .
Passaggio 1.4.2
Sposta il negativo davanti alla frazione.
Passaggio 1.4.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5
Semplifica.
Tocca per altri passaggi...
Passaggio 1.5.1
Somma e .
Passaggio 1.5.2
Riordina i termini.
Passaggio 1.5.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.2
Riscrivi come .
Passaggio 2.2.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.6
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.6.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.6.2
Moltiplica per .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Eleva alla potenza di .
Passaggio 2.2.9
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.10
Sottrai da .
Passaggio 2.2.11
Moltiplica per .
Passaggio 2.2.12
Moltiplica per .
Passaggio 2.2.13
Somma e .
Passaggio 2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.3.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 2.3.2.1
e .
Passaggio 2.3.2.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 4.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.1.4
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.4.1
e .
Passaggio 4.1.4.2
Sposta il negativo davanti alla frazione.
Passaggio 4.1.4.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.5.1
Somma e .
Passaggio 4.1.5.2
Riordina i termini.
Passaggio 4.1.5.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.3
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 5.3.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 5.3.2
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 5.4
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 5.4.1
Moltiplica ogni termine in per .
Passaggio 5.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.4.2.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 5.4.2.1.2
Elimina il fattore comune.
Passaggio 5.4.2.1.3
Riscrivi l'espressione.
Passaggio 5.5
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 5.5.1
Riscrivi l'equazione come .
Passaggio 5.5.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.5.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.5.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.5.2.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.5.2.2.2.1
Elimina il fattore comune.
Passaggio 5.5.2.2.2.2
Dividi per .
Passaggio 5.5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.5.2.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.5.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5.5.4
Semplifica .
Tocca per altri passaggi...
Passaggio 5.5.4.1
Riscrivi come .
Passaggio 5.5.4.2
Qualsiasi radice di è .
Passaggio 5.5.4.3
Moltiplica per .
Passaggio 5.5.4.4
Combina e semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 5.5.4.4.1
Moltiplica per .
Passaggio 5.5.4.4.2
Eleva alla potenza di .
Passaggio 5.5.4.4.3
Eleva alla potenza di .
Passaggio 5.5.4.4.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 5.5.4.4.5
Somma e .
Passaggio 5.5.4.4.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 5.5.4.4.6.1
Usa per riscrivere come .
Passaggio 5.5.4.4.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 5.5.4.4.6.3
e .
Passaggio 5.5.4.4.6.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.5.4.4.6.4.1
Elimina il fattore comune.
Passaggio 5.5.4.4.6.4.2
Riscrivi l'espressione.
Passaggio 5.5.4.4.6.5
Semplifica.
Passaggio 5.5.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 5.5.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 5.5.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 5.5.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.2.1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 6.2.2
Semplifica .
Tocca per altri passaggi...
Passaggio 6.2.2.1
Riscrivi come .
Passaggio 6.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 6.2.2.3
Più o meno è .
Passaggio 6.3
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 9.1.1
Applica la regola del prodotto a .
Passaggio 9.1.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 9.1.2.1
Riscrivi come .
Passaggio 9.1.2.2
Metti in evidenza .
Passaggio 9.1.2.3
Estrai i termini dal radicale.
Passaggio 9.1.3
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 9.1.3.1
Scomponi da .
Passaggio 9.1.3.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 9.1.3.2.1
Scomponi da .
Passaggio 9.1.3.2.2
Elimina il fattore comune.
Passaggio 9.1.3.2.3
Riscrivi l'espressione.
Passaggio 9.2
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 9.3
Moltiplica per .
Passaggio 9.4
Combina e semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 9.4.1
Moltiplica per .
Passaggio 9.4.2
Eleva alla potenza di .
Passaggio 9.4.3
Eleva alla potenza di .
Passaggio 9.4.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 9.4.5
Somma e .
Passaggio 9.4.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 9.4.6.1
Usa per riscrivere come .
Passaggio 9.4.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 9.4.6.3
e .
Passaggio 9.4.6.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.4.6.4.1
Elimina il fattore comune.
Passaggio 9.4.6.4.2
Riscrivi l'espressione.
Passaggio 9.4.6.5
Semplifica.
Passaggio 9.5
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 9.5.1
Scomponi da .
Passaggio 9.5.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 9.5.2.1
Eleva alla potenza di .
Passaggio 9.5.2.2
Scomponi da .
Passaggio 9.5.2.3
Elimina il fattore comune.
Passaggio 9.5.2.4
Riscrivi l'espressione.
Passaggio 9.5.2.5
Dividi per .
Passaggio 10
Poiché il test della derivata prima è fallito, non ci sono estremi locali.
Nessun estremo locale
Passaggio 11