Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Differenzia.
Passaggio 1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4
Semplifica l'espressione.
Passaggio 1.3.4.1
Somma e .
Passaggio 1.3.4.2
Moltiplica per .
Passaggio 1.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.6
Moltiplica per .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.7
Somma e .
Passaggio 2.2.8
Moltiplica per .
Passaggio 2.2.9
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.5
Somma e .
Passaggio 2.3.6
Moltiplica per .
Passaggio 2.4
Semplifica.
Passaggio 2.4.1
Somma e .
Passaggio 2.4.2
Riordina i termini.
Passaggio 2.4.3
Riordina i fattori in .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 4.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 4.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.3
Differenzia.
Passaggio 4.1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.4
Semplifica l'espressione.
Passaggio 4.1.3.4.1
Somma e .
Passaggio 4.1.3.4.2
Moltiplica per .
Passaggio 4.1.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.6
Moltiplica per .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi da .
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.2
Moltiplica per .
Passaggio 5.2.3
Scomponi da .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Passaggio 5.4.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 5.4.2.2
Espandi il lato sinistro.
Passaggio 5.4.2.2.1
Espandi spostando fuori dal logaritmo.
Passaggio 5.4.2.2.2
Il logaritmo naturale di è .
Passaggio 5.4.2.2.3
Moltiplica per .
Passaggio 5.4.2.3
Semplifica il lato destro.
Passaggio 5.4.2.3.1
Non è possibile risolvere l'equazione perché è indefinita.
Passaggio 5.4.2.4
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Riscrivi come .
Passaggio 9.2
Somma e .
Passaggio 10
Poiché il test della derivata prima è fallito, non ci sono estremi locali.
Nessun estremo locale
Passaggio 11