Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=12x^2-2x^3+3y^2+6xy
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5
Calcola .
Tocca per altri passaggi...
Passaggio 1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.5.3
Moltiplica per .
Passaggio 1.6
Semplifica.
Tocca per altri passaggi...
Passaggio 1.6.1
Somma e .
Passaggio 1.6.2
Riordina i termini.
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Moltiplica per .
Passaggio 4.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.5.3
Moltiplica per .
Passaggio 4.1.6
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.6.1
Somma e .
Passaggio 4.1.6.2
Riordina i termini.
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Usa la formula quadratica per trovare le soluzioni.
Passaggio 5.3
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 5.4
Semplifica.
Tocca per altri passaggi...
Passaggio 5.4.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.4.1.1
Eleva alla potenza di .
Passaggio 5.4.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 5.4.1.2.1
Moltiplica per .
Passaggio 5.4.1.2.2
Moltiplica per .
Passaggio 5.4.1.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.4.1.3.1
Scomponi da .
Passaggio 5.4.1.3.2
Scomponi da .
Passaggio 5.4.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 5.4.1.4.1
Riscrivi come .
Passaggio 5.4.1.4.2
Riscrivi come .
Passaggio 5.4.1.5
Estrai i termini dal radicale.
Passaggio 5.4.1.6
Eleva alla potenza di .
Passaggio 5.4.2
Moltiplica per .
Passaggio 5.4.3
Semplifica .
Passaggio 5.5
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 5.5.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.5.1.1
Eleva alla potenza di .
Passaggio 5.5.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 5.5.1.2.1
Moltiplica per .
Passaggio 5.5.1.2.2
Moltiplica per .
Passaggio 5.5.1.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.5.1.3.1
Scomponi da .
Passaggio 5.5.1.3.2
Scomponi da .
Passaggio 5.5.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 5.5.1.4.1
Riscrivi come .
Passaggio 5.5.1.4.2
Riscrivi come .
Passaggio 5.5.1.5
Estrai i termini dal radicale.
Passaggio 5.5.1.6
Eleva alla potenza di .
Passaggio 5.5.2
Moltiplica per .
Passaggio 5.5.3
Semplifica .
Passaggio 5.5.4
Cambia da a .
Passaggio 5.6
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 5.6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.6.1.1
Eleva alla potenza di .
Passaggio 5.6.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 5.6.1.2.1
Moltiplica per .
Passaggio 5.6.1.2.2
Moltiplica per .
Passaggio 5.6.1.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.6.1.3.1
Scomponi da .
Passaggio 5.6.1.3.2
Scomponi da .
Passaggio 5.6.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 5.6.1.4.1
Riscrivi come .
Passaggio 5.6.1.4.2
Riscrivi come .
Passaggio 5.6.1.5
Estrai i termini dal radicale.
Passaggio 5.6.1.6
Eleva alla potenza di .
Passaggio 5.6.2
Moltiplica per .
Passaggio 5.6.3
Semplifica .
Passaggio 5.6.4
Cambia da a .
Passaggio 5.7
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 9.1.1
Applica la proprietà distributiva.
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.2
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 9.2.1
Somma e .
Passaggio 9.2.2
Sottrai da .
Passaggio 10
Poiché il test della derivata prima è fallito, non ci sono estremi locali.
Nessun estremo locale
Passaggio 11