Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.3.6
Sposta alla sinistra di .
Passaggio 1.3.7
Moltiplica per .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Sposta alla sinistra di .
Passaggio 2.3.7
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.3
Calcola .
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 4.1.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.3.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.5
Moltiplica per .
Passaggio 4.1.3.6
Sposta alla sinistra di .
Passaggio 4.1.3.7
Moltiplica per .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi il primo membro dell'equazione.
Passaggio 5.2.1
Riscrivi come .
Passaggio 5.2.2
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 5.2.3
Scomponi da .
Passaggio 5.2.3.1
Scomponi da .
Passaggio 5.2.3.2
Scomponi da .
Passaggio 5.2.3.3
Scomponi da .
Passaggio 5.2.4
Sostituisci tutte le occorrenze di con .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Passaggio 5.4.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 5.4.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 5.4.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Passaggio 5.5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2.2
Semplifica il lato sinistro.
Passaggio 5.5.2.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.5.2.2.2.2
Dividi per .
Passaggio 5.5.2.2.3
Semplifica il lato destro.
Passaggio 5.5.2.2.3.1
Dividi per .
Passaggio 5.5.2.3
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 5.5.2.4
Espandi il lato sinistro.
Passaggio 5.5.2.4.1
Espandi spostando fuori dal logaritmo.
Passaggio 5.5.2.4.2
Il logaritmo naturale di è .
Passaggio 5.5.2.4.3
Moltiplica per .
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Semplifica spostando all'interno del logaritmo.
Passaggio 9.1.4
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 9.1.5
Eleva alla potenza di .
Passaggio 9.1.6
Moltiplica per .
Passaggio 9.2
Sottrai da .
Passaggio 10
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 11
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Passaggio 11.2.1
Semplifica ciascun termine.
Passaggio 11.2.1.1
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 11.2.1.2
Moltiplica per .
Passaggio 11.2.1.3
Semplifica spostando all'interno del logaritmo.
Passaggio 11.2.1.4
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 11.2.1.5
Eleva alla potenza di .
Passaggio 11.2.1.6
Moltiplica per .
Passaggio 11.2.2
Sottrai da .
Passaggio 11.2.3
La risposta finale è .
Passaggio 12
Questi sono gli estremi locali per .
è un massimo locale
Passaggio 13