Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Calcola .
Passaggio 1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4.3
Moltiplica per .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Calcola .
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.4.3
Moltiplica per .
Passaggio 2.5
Differenzia usando la regola della costante.
Passaggio 2.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.5.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Differenzia.
Passaggio 4.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2
Calcola .
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Moltiplica per .
Passaggio 4.1.3
Calcola .
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.1.4
Calcola .
Passaggio 4.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.4.3
Moltiplica per .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi il primo membro dell'equazione.
Passaggio 5.2.1
Scomponi usando il teorema delle radici razionali.
Passaggio 5.2.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 5.2.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 5.2.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Passaggio 5.2.1.3.1
Sostituisci nel polinomio.
Passaggio 5.2.1.3.2
Eleva alla potenza di .
Passaggio 5.2.1.3.3
Moltiplica per .
Passaggio 5.2.1.3.4
Eleva alla potenza di .
Passaggio 5.2.1.3.5
Moltiplica per .
Passaggio 5.2.1.3.6
Sottrai da .
Passaggio 5.2.1.3.7
Moltiplica per .
Passaggio 5.2.1.3.8
Somma e .
Passaggio 5.2.1.3.9
Sottrai da .
Passaggio 5.2.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 5.2.1.5
Dividi per .
Passaggio 5.2.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
| - | - | + | - |
Passaggio 5.2.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
| - | - | + | - |
Passaggio 5.2.1.5.3
Moltiplica il nuovo quoziente per il divisore.
| - | - | + | - | ||||||||
| + | - |
Passaggio 5.2.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
| - | - | + | - | ||||||||
| - | + |
Passaggio 5.2.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - |
Passaggio 5.2.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + |
Passaggio 5.2.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + |
Passaggio 5.2.1.5.8
Moltiplica il nuovo quoziente per il divisore.
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| - | + |
Passaggio 5.2.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - |
Passaggio 5.2.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + |
Passaggio 5.2.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Passaggio 5.2.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Passaggio 5.2.1.5.13
Moltiplica il nuovo quoziente per il divisore.
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - | ||||||||||
| + | - |
Passaggio 5.2.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - | ||||||||||
| - | + |
Passaggio 5.2.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
Passaggio 5.2.1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 5.2.1.6
Scrivi come insieme di fattori.
Passaggio 5.2.2
Scomponi mediante raccoglimento.
Passaggio 5.2.2.1
Scomponi mediante raccoglimento.
Passaggio 5.2.2.1.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 5.2.2.1.1.1
Scomponi da .
Passaggio 5.2.2.1.1.2
Riscrivi come più .
Passaggio 5.2.2.1.1.3
Applica la proprietà distributiva.
Passaggio 5.2.2.1.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 5.2.2.1.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 5.2.2.1.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 5.2.2.1.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 5.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Passaggio 5.5.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 5.5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2.2
Semplifica il lato sinistro.
Passaggio 5.5.2.2.2.1
Elimina il fattore comune di .
Passaggio 5.5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.5.2.2.2.1.2
Dividi per .
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Moltiplica per .
Passaggio 9.2
Semplifica aggiungendo e sottraendo.
Passaggio 9.2.1
Sottrai da .
Passaggio 9.2.2
Somma e .
Passaggio 10
Passaggio 10.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 10.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.2.2
Semplifica il risultato.
Passaggio 10.2.2.1
Semplifica ciascun termine.
Passaggio 10.2.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.2.2.1.2
Moltiplica per .
Passaggio 10.2.2.1.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.2.2.1.4
Moltiplica per .
Passaggio 10.2.2.1.5
Moltiplica per .
Passaggio 10.2.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.2.2.2.1
Somma e .
Passaggio 10.2.2.2.2
Somma e .
Passaggio 10.2.2.2.3
Sottrai da .
Passaggio 10.2.2.3
La risposta finale è .
Passaggio 10.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.3.2
Semplifica il risultato.
Passaggio 10.3.2.1
Semplifica ciascun termine.
Passaggio 10.3.2.1.1
Eleva alla potenza di .
Passaggio 10.3.2.1.2
Moltiplica per .
Passaggio 10.3.2.1.3
Eleva alla potenza di .
Passaggio 10.3.2.1.4
Moltiplica per .
Passaggio 10.3.2.1.5
Moltiplica per .
Passaggio 10.3.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.3.2.2.1
Sottrai da .
Passaggio 10.3.2.2.2
Somma e .
Passaggio 10.3.2.2.3
Sottrai da .
Passaggio 10.3.2.3
La risposta finale è .
Passaggio 10.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.4.2
Semplifica il risultato.
Passaggio 10.4.2.1
Semplifica ciascun termine.
Passaggio 10.4.2.1.1
Moltiplica per sommando gli esponenti.
Passaggio 10.4.2.1.1.1
Moltiplica per .
Passaggio 10.4.2.1.1.1.1
Eleva alla potenza di .
Passaggio 10.4.2.1.1.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 10.4.2.1.1.2
Somma e .
Passaggio 10.4.2.1.2
Eleva alla potenza di .
Passaggio 10.4.2.1.3
Eleva alla potenza di .
Passaggio 10.4.2.1.4
Moltiplica per .
Passaggio 10.4.2.1.5
Moltiplica per .
Passaggio 10.4.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.4.2.2.1
Sottrai da .
Passaggio 10.4.2.2.2
Somma e .
Passaggio 10.4.2.2.3
Sottrai da .
Passaggio 10.4.2.3
La risposta finale è .
Passaggio 10.5
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 10.6
Poiché la derivata prima non ha cambiato segno intorno a , non si tratta né di un minimo né di un massimo locale.
Non è un minimo o un massimo locale
Passaggio 10.7
Questi sono gli estremi locali per .
è un minimo locale
è un minimo locale
Passaggio 11