Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
La derivata di rispetto a è .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3
La derivata di rispetto a è .
Passaggio 1.3.4
Moltiplica per .
Passaggio 1.4
Riordina i termini.
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.3
La derivata di rispetto a è .
Passaggio 2.2.4
La derivata di rispetto a è .
Passaggio 2.2.5
Eleva alla potenza di .
Passaggio 2.2.6
Eleva alla potenza di .
Passaggio 2.2.7
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.8
Somma e .
Passaggio 2.2.9
Eleva alla potenza di .
Passaggio 2.2.10
Eleva alla potenza di .
Passaggio 2.2.11
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.12
Somma e .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
La derivata di rispetto a è .
Passaggio 2.4
Semplifica.
Passaggio 2.4.1
Applica la proprietà distributiva.
Passaggio 2.4.2
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Scomponi da .
Passaggio 4.2
Scomponi da .
Passaggio 4.3
Scomponi da .
Passaggio 5
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 6
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Passaggio 6.2.1
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 6.2.2
Semplifica il lato destro.
Passaggio 6.2.2.1
Il valore esatto di è .
Passaggio 6.2.3
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 6.2.4
Sottrai da .
Passaggio 6.2.5
La soluzione dell'equazione .
Passaggio 7
Passaggio 7.1
Imposta uguale a .
Passaggio 7.2
Risolvi per .
Passaggio 7.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 7.2.2
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 7.2.3
Semplifica il lato destro.
Passaggio 7.2.3.1
Il valore esatto di è .
Passaggio 7.2.4
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 7.2.5
Sottrai da .
Passaggio 7.2.6
La soluzione dell'equazione .
Passaggio 8
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 9
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 10
Passaggio 10.1
Semplifica ciascun termine.
Passaggio 10.1.1
Il valore esatto di è .
Passaggio 10.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 10.1.3
Moltiplica per .
Passaggio 10.1.4
Il valore esatto di è .
Passaggio 10.1.5
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.1.6
Moltiplica per .
Passaggio 10.1.7
Il valore esatto di è .
Passaggio 10.1.8
Moltiplica per .
Passaggio 10.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.2.1
Somma e .
Passaggio 10.2.2
Sottrai da .
Passaggio 11
Passaggio 11.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 11.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 11.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2.2
Semplifica il risultato.
Passaggio 11.2.2.1
Semplifica ciascun termine.
Passaggio 11.2.2.1.1
Calcola .
Passaggio 11.2.2.1.2
Moltiplica per .
Passaggio 11.2.2.1.3
Calcola .
Passaggio 11.2.2.1.4
Moltiplica per .
Passaggio 11.2.2.1.5
Calcola .
Passaggio 11.2.2.1.6
Moltiplica per .
Passaggio 11.2.2.2
Somma e .
Passaggio 11.2.2.3
La risposta finale è .
Passaggio 11.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 11.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.3.2
Semplifica il risultato.
Passaggio 11.3.2.1
Semplifica ciascun termine.
Passaggio 11.3.2.1.1
Calcola .
Passaggio 11.3.2.1.2
Moltiplica per .
Passaggio 11.3.2.1.3
Calcola .
Passaggio 11.3.2.1.4
Moltiplica per .
Passaggio 11.3.2.1.5
Calcola .
Passaggio 11.3.2.1.6
Moltiplica per .
Passaggio 11.3.2.2
Sottrai da .
Passaggio 11.3.2.3
La risposta finale è .
Passaggio 11.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 11.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.4.2
Semplifica il risultato.
Passaggio 11.4.2.1
Semplifica ciascun termine.
Passaggio 11.4.2.1.1
Calcola .
Passaggio 11.4.2.1.2
Moltiplica per .
Passaggio 11.4.2.1.3
Calcola .
Passaggio 11.4.2.1.4
Moltiplica per .
Passaggio 11.4.2.1.5
Calcola .
Passaggio 11.4.2.1.6
Moltiplica per .
Passaggio 11.4.2.2
Somma e .
Passaggio 11.4.2.3
La risposta finale è .
Passaggio 11.5
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 11.5.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.5.2
Semplifica il risultato.
Passaggio 11.5.2.1
Semplifica ciascun termine.
Passaggio 11.5.2.1.1
Calcola .
Passaggio 11.5.2.1.2
Moltiplica per .
Passaggio 11.5.2.1.3
Calcola .
Passaggio 11.5.2.1.4
Moltiplica per .
Passaggio 11.5.2.1.5
Calcola .
Passaggio 11.5.2.1.6
Moltiplica per .
Passaggio 11.5.2.2
Sottrai da .
Passaggio 11.5.2.3
La risposta finale è .
Passaggio 11.6
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
Passaggio 11.7
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 11.8
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
Passaggio 11.9
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
è un massimo locale
è un massimo locale
è un minimo locale
è un massimo locale
Passaggio 12