Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=3x- logaritmo naturale di x
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
La derivata di rispetto a è .
Passaggio 1.4
Riordina i termini.
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.2
Riscrivi come .
Passaggio 2.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.5
Moltiplica per .
Passaggio 2.2.6
Moltiplica per .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Somma e .
Passaggio 2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.4.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Moltiplica per .
Passaggio 4.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
La derivata di rispetto a è .
Passaggio 4.1.4
Riordina i termini.
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.3
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 5.3.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 5.3.2
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 5.4
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 5.4.1
Moltiplica ogni termine in per .
Passaggio 5.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.4.2.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 5.4.2.1.2
Elimina il fattore comune.
Passaggio 5.4.2.1.3
Riscrivi l'espressione.
Passaggio 5.5
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 5.5.1
Riscrivi l'equazione come .
Passaggio 5.5.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.5.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.5.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.5.2.2.1.1
Elimina il fattore comune.
Passaggio 5.5.2.2.1.2
Dividi per .
Passaggio 5.5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.5.2.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 9.1.1
Applica la regola del prodotto a .
Passaggio 9.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 9.1.3
Eleva alla potenza di .
Passaggio 9.2
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 9.3
Moltiplica per .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 11.2.1.1
Elimina il fattore comune.
Passaggio 11.2.1.2
Riscrivi l'espressione.
Passaggio 11.2.2
La risposta finale è .
Passaggio 12
Questi sono gli estremi locali per .
è un minimo locale
Passaggio 13