Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5
Semplifica.
Passaggio 1.5.1
Somma e .
Passaggio 1.5.2
Riordina i termini.
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Moltiplica per .
Passaggio 4.1.3
Calcola .
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5
Semplifica.
Passaggio 4.1.5.1
Somma e .
Passaggio 4.1.5.2
Riordina i termini.
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi da .
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.2
Scomponi da .
Passaggio 5.2.3
Scomponi da .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a .
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Passaggio 5.5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2.2
Semplifica il lato sinistro.
Passaggio 5.5.2.2.2.1
Elimina il fattore comune di .
Passaggio 5.5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.5.2.2.2.1.2
Dividi per .
Passaggio 5.5.2.2.3
Semplifica il lato destro.
Passaggio 5.5.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 5.5.2.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5.5.2.4
Semplifica .
Passaggio 5.5.2.4.1
Riscrivi come .
Passaggio 5.5.2.4.1.1
Riscrivi come .
Passaggio 5.5.2.4.1.2
Riscrivi come .
Passaggio 5.5.2.4.2
Estrai i termini dal radicale.
Passaggio 5.5.2.4.3
Eleva alla potenza di .
Passaggio 5.5.2.4.4
Riscrivi come .
Passaggio 5.5.2.4.5
Moltiplica per .
Passaggio 5.5.2.4.6
Combina e semplifica il denominatore.
Passaggio 5.5.2.4.6.1
Moltiplica per .
Passaggio 5.5.2.4.6.2
Eleva alla potenza di .
Passaggio 5.5.2.4.6.3
Usa la regola della potenza per combinare gli esponenti.
Passaggio 5.5.2.4.6.4
Somma e .
Passaggio 5.5.2.4.6.5
Riscrivi come .
Passaggio 5.5.2.4.6.5.1
Usa per riscrivere come .
Passaggio 5.5.2.4.6.5.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 5.5.2.4.6.5.3
e .
Passaggio 5.5.2.4.6.5.4
Elimina il fattore comune di .
Passaggio 5.5.2.4.6.5.4.1
Elimina il fattore comune.
Passaggio 5.5.2.4.6.5.4.2
Riscrivi l'espressione.
Passaggio 5.5.2.4.6.5.5
Calcola l'esponente.
Passaggio 5.5.2.4.7
Semplifica il numeratore.
Passaggio 5.5.2.4.7.1
Riscrivi come .
Passaggio 5.5.2.4.7.2
Eleva alla potenza di .
Passaggio 5.5.2.4.8
Semplifica il numeratore.
Passaggio 5.5.2.4.8.1
Combina usando la regola del prodotto per i radicali.
Passaggio 5.5.2.4.8.2
Moltiplica per .
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.2
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Passaggio 11.2.1
Semplifica ciascun termine.
Passaggio 11.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 11.2.1.2
Moltiplica per .
Passaggio 11.2.1.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 11.2.1.4
Moltiplica per .
Passaggio 11.2.2
Semplifica aggiungendo i numeri.
Passaggio 11.2.2.1
Somma e .
Passaggio 11.2.2.2
Somma e .
Passaggio 11.2.3
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Passaggio 13.1
Semplifica ciascun termine.
Passaggio 13.1.1
Usa la regola della potenza per distribuire l'esponente.
Passaggio 13.1.1.1
Applica la regola del prodotto a .
Passaggio 13.1.1.2
Applica la regola del prodotto a .
Passaggio 13.1.2
Eleva alla potenza di .
Passaggio 13.1.3
Riscrivi come .
Passaggio 13.1.3.1
Usa per riscrivere come .
Passaggio 13.1.3.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 13.1.3.3
e .
Passaggio 13.1.3.4
Elimina il fattore comune di .
Passaggio 13.1.3.4.1
Elimina il fattore comune.
Passaggio 13.1.3.4.2
Riscrivi l'espressione.
Passaggio 13.1.3.5
Calcola l'esponente.
Passaggio 13.1.4
Eleva alla potenza di .
Passaggio 13.1.5
Elimina il fattore comune di .
Passaggio 13.1.5.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 13.1.5.2
Scomponi da .
Passaggio 13.1.5.3
Scomponi da .
Passaggio 13.1.5.4
Elimina il fattore comune.
Passaggio 13.1.5.5
Riscrivi l'espressione.
Passaggio 13.1.6
e .
Passaggio 13.1.7
Moltiplica per .
Passaggio 13.1.8
Dividi per .
Passaggio 13.2
Somma e .
Passaggio 14
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 15
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Passaggio 15.2.1
Semplifica ciascun termine.
Passaggio 15.2.1.1
Usa la regola della potenza per distribuire l'esponente.
Passaggio 15.2.1.1.1
Applica la regola del prodotto a .
Passaggio 15.2.1.1.2
Applica la regola del prodotto a .
Passaggio 15.2.1.2
Eleva alla potenza di .
Passaggio 15.2.1.3
Moltiplica per .
Passaggio 15.2.1.4
Semplifica il numeratore.
Passaggio 15.2.1.4.1
Riscrivi come .
Passaggio 15.2.1.4.2
Eleva alla potenza di .
Passaggio 15.2.1.4.3
Riscrivi come .
Passaggio 15.2.1.4.3.1
Scomponi da .
Passaggio 15.2.1.4.3.2
Riscrivi come .
Passaggio 15.2.1.4.4
Estrai i termini dal radicale.
Passaggio 15.2.1.5
Eleva alla potenza di .
Passaggio 15.2.1.6
Elimina il fattore comune di e .
Passaggio 15.2.1.6.1
Scomponi da .
Passaggio 15.2.1.6.2
Elimina i fattori comuni.
Passaggio 15.2.1.6.2.1
Scomponi da .
Passaggio 15.2.1.6.2.2
Elimina il fattore comune.
Passaggio 15.2.1.6.2.3
Riscrivi l'espressione.
Passaggio 15.2.1.7
e .
Passaggio 15.2.1.8
Usa la regola della potenza per distribuire l'esponente.
Passaggio 15.2.1.8.1
Applica la regola del prodotto a .
Passaggio 15.2.1.8.2
Applica la regola del prodotto a .
Passaggio 15.2.1.9
Eleva alla potenza di .
Passaggio 15.2.1.10
Semplifica il numeratore.
Passaggio 15.2.1.10.1
Riscrivi come .
Passaggio 15.2.1.10.2
Metti in evidenza .
Passaggio 15.2.1.10.3
Estrai i termini dal radicale.
Passaggio 15.2.1.10.4
Eleva alla potenza di .
Passaggio 15.2.1.10.5
Riscrivi come .
Passaggio 15.2.1.10.5.1
Scomponi da .
Passaggio 15.2.1.10.5.2
Riscrivi come .
Passaggio 15.2.1.10.6
Estrai i termini dal radicale.
Passaggio 15.2.1.10.7
Moltiplica per .
Passaggio 15.2.1.11
Eleva alla potenza di .
Passaggio 15.2.1.12
Elimina il fattore comune di .
Passaggio 15.2.1.12.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 15.2.1.12.2
Scomponi da .
Passaggio 15.2.1.12.3
Elimina il fattore comune.
Passaggio 15.2.1.12.4
Riscrivi l'espressione.
Passaggio 15.2.1.13
Elimina il fattore comune di e .
Passaggio 15.2.1.13.1
Scomponi da .
Passaggio 15.2.1.13.2
Elimina i fattori comuni.
Passaggio 15.2.1.13.2.1
Scomponi da .
Passaggio 15.2.1.13.2.2
Elimina il fattore comune.
Passaggio 15.2.1.13.2.3
Riscrivi l'espressione.
Passaggio 15.2.1.14
Sposta il negativo davanti alla frazione.
Passaggio 15.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 15.2.3
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 15.2.3.1
Moltiplica per .
Passaggio 15.2.3.2
Moltiplica per .
Passaggio 15.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 15.2.5
Semplifica il numeratore.
Passaggio 15.2.5.1
Moltiplica per .
Passaggio 15.2.5.2
Sottrai da .
Passaggio 15.2.6
La risposta finale è .
Passaggio 16
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
Passaggio 17