Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Dividi il numero usando la regola del prodotto di limiti quando tende a .
Passaggio 1.1.2.2
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.4
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.5
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.2.6
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.7
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.8
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.2.8.1
Calcola il limite di inserendo per .
Passaggio 1.1.2.8.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.8.3
Calcola il limite di inserendo per .
Passaggio 1.1.2.9
Semplifica la risposta.
Passaggio 1.1.2.9.1
Moltiplica per .
Passaggio 1.1.2.9.2
Sottrai da .
Passaggio 1.1.2.9.3
Semplifica ciascun termine.
Passaggio 1.1.2.9.3.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.2.9.3.2
Moltiplica per .
Passaggio 1.1.2.9.3.3
Moltiplica per .
Passaggio 1.1.2.9.4
Somma e .
Passaggio 1.1.2.9.5
Sottrai da .
Passaggio 1.1.2.9.6
Moltiplica per .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.2
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.3.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.3.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.5
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.3.5.1
Calcola il limite di inserendo per .
Passaggio 1.1.3.5.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.6
Semplifica la risposta.
Passaggio 1.1.3.6.1
Semplifica ciascun termine.
Passaggio 1.1.3.6.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.3.6.1.2
Moltiplica per .
Passaggio 1.1.3.6.2
Sottrai da .
Passaggio 1.1.3.6.3
Somma e .
Passaggio 1.1.3.6.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.7
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 1.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.9
Somma e .
Passaggio 1.3.10
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.11
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.12
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.13
Somma e .
Passaggio 1.3.14
Moltiplica per .
Passaggio 1.3.15
Semplifica.
Passaggio 1.3.15.1
Applica la proprietà distributiva.
Passaggio 1.3.15.2
Applica la proprietà distributiva.
Passaggio 1.3.15.3
Applica la proprietà distributiva.
Passaggio 1.3.15.4
Raccogli i termini.
Passaggio 1.3.15.4.1
Eleva alla potenza di .
Passaggio 1.3.15.4.2
Eleva alla potenza di .
Passaggio 1.3.15.4.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.3.15.4.4
Somma e .
Passaggio 1.3.15.4.5
Moltiplica per .
Passaggio 1.3.15.4.6
Sposta alla sinistra di .
Passaggio 1.3.15.4.7
Moltiplica per .
Passaggio 1.3.15.4.8
Somma e .
Passaggio 1.3.15.4.9
Somma e .
Passaggio 1.3.15.4.10
Somma e .
Passaggio 1.3.15.4.11
Sottrai da .
Passaggio 1.3.16
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.17
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.18
Calcola .
Passaggio 1.3.18.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.18.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.18.3
Moltiplica per .
Passaggio 1.3.19
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.20
Somma e .
Passaggio 2
Passaggio 2.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 2.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 2.1.2
Calcola il limite del numeratore.
Passaggio 2.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.1.2.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.1.2.3
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 2.1.2.4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.1.2.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.1.2.6
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 2.1.2.6.1
Calcola il limite di inserendo per .
Passaggio 2.1.2.6.2
Calcola il limite di inserendo per .
Passaggio 2.1.2.7
Semplifica la risposta.
Passaggio 2.1.2.7.1
Semplifica ciascun termine.
Passaggio 2.1.2.7.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.1.2.7.1.2
Moltiplica per .
Passaggio 2.1.2.7.1.3
Moltiplica per .
Passaggio 2.1.2.7.1.4
Moltiplica per .
Passaggio 2.1.2.7.2
Somma e .
Passaggio 2.1.2.7.3
Sottrai da .
Passaggio 2.1.3
Calcola il limite del denominatore.
Passaggio 2.1.3.1
Calcola il limite.
Passaggio 2.1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.1.3.1.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.1.3.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.1.3.2
Calcola il limite di inserendo per .
Passaggio 2.1.3.3
Semplifica la risposta.
Passaggio 2.1.3.3.1
Semplifica ciascun termine.
Passaggio 2.1.3.3.1.1
Moltiplica per .
Passaggio 2.1.3.3.1.2
Moltiplica per .
Passaggio 2.1.3.3.2
Sottrai da .
Passaggio 2.1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 2.3
Trova la derivata del numeratore e del denominatore.
Passaggio 2.3.1
Differenzia numeratore e denominatore.
Passaggio 2.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.3
Calcola .
Passaggio 2.3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.3.3
Moltiplica per .
Passaggio 2.3.4
Calcola .
Passaggio 2.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.4.3
Moltiplica per .
Passaggio 2.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.6
Somma e .
Passaggio 2.3.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.8
Calcola .
Passaggio 2.3.8.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.8.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.8.3
Moltiplica per .
Passaggio 2.3.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.10
Somma e .
Passaggio 2.4
Elimina il fattore comune di e .
Passaggio 2.4.1
Scomponi da .
Passaggio 2.4.2
Scomponi da .
Passaggio 2.4.3
Scomponi da .
Passaggio 2.4.4
Elimina i fattori comuni.
Passaggio 2.4.4.1
Scomponi da .
Passaggio 2.4.4.2
Elimina il fattore comune.
Passaggio 2.4.4.3
Riscrivi l'espressione.
Passaggio 2.4.4.4
Dividi per .
Passaggio 3
Passaggio 3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 3.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 4
Calcola il limite di inserendo per .
Passaggio 5
Passaggio 5.1
Moltiplica per .
Passaggio 5.2
Somma e .