Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.2
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.2.3
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.2.4
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.2.4.1
Calcola il limite di inserendo per .
Passaggio 1.1.2.4.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.5
Semplifica la risposta.
Passaggio 1.1.2.5.1
Semplifica ciascun termine.
Passaggio 1.1.2.5.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.2.5.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.2.5.1.3
Moltiplica per .
Passaggio 1.1.2.5.2
Sottrai da .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.3
Semplifica l'espressione.
Passaggio 1.1.3.3.1
Calcola il limite di inserendo per .
Passaggio 1.1.3.3.2
Sottrai da .
Passaggio 1.1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.4
Calcola .
Passaggio 1.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.4.3
Moltiplica per .
Passaggio 1.3.5
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.7
Calcola .
Passaggio 1.3.7.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.7.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.7.3
Moltiplica per .
Passaggio 1.3.8
Sottrai da .
Passaggio 1.4
Sposta quello negativo dal denominatore di .
Passaggio 2
Passaggio 2.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.2
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.4
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 2.5
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.6
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 3
Passaggio 3.1
Calcola il limite di inserendo per .
Passaggio 3.2
Calcola il limite di inserendo per .
Passaggio 4
Passaggio 4.1
Semplifica ciascun termine.
Passaggio 4.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.2
Moltiplica per .
Passaggio 4.1.3
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.4
Moltiplica per .
Passaggio 4.2
Sottrai da .
Passaggio 4.3
Moltiplica per .