Calcolo Esempi

Valutare l'Integrale integrale di (x^3+1)/(x^2-1) rispetto a x
Passaggio 1
Dividi per .
Tocca per altri passaggi...
Passaggio 1.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+-+++
Passaggio 1.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+-+++
Passaggio 1.3
Moltiplica il nuovo quoziente per il divisore.
+-+++
++-
Passaggio 1.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+-+++
--+
Passaggio 1.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+-+++
--+
+
Passaggio 1.6
Abbassa il termine successivo dal dividendo originale nel dividendo attuale.
+-+++
--+
++
Passaggio 1.7
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Secondo la regola di potenza, l'intero di rispetto a è .
Passaggio 4
Dividi la frazione in due frazioni.
Passaggio 5
Dividi il singolo integrale in più integrali.
Passaggio 6
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 6.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 6.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.5
Somma e .
Passaggio 6.2
Riscrivi il problema utilizzando e .
Passaggio 7
Semplifica.
Tocca per altri passaggi...
Passaggio 7.1
Moltiplica per .
Passaggio 7.2
Sposta alla sinistra di .
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
L'integrale di rispetto a è .
Passaggio 10
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 10.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 10.1.1
Scomponi la frazione.
Tocca per altri passaggi...
Passaggio 10.1.1.1
Riscrivi come .
Passaggio 10.1.1.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 10.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 10.1.3
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 10.1.4
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 10.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.1.5.1
Elimina il fattore comune.
Passaggio 10.1.5.2
Riscrivi l'espressione.
Passaggio 10.1.6
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.1.6.1
Elimina il fattore comune.
Passaggio 10.1.6.2
Riscrivi l'espressione.
Passaggio 10.1.7
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 10.1.7.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.1.7.1.1
Elimina il fattore comune.
Passaggio 10.1.7.1.2
Dividi per .
Passaggio 10.1.7.2
Applica la proprietà distributiva.
Passaggio 10.1.7.3
Sposta alla sinistra di .
Passaggio 10.1.7.4
Riscrivi come .
Passaggio 10.1.7.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.1.7.5.1
Elimina il fattore comune.
Passaggio 10.1.7.5.2
Dividi per .
Passaggio 10.1.7.6
Applica la proprietà distributiva.
Passaggio 10.1.7.7
Moltiplica per .
Passaggio 10.1.8
Sposta .
Passaggio 10.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 10.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 10.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 10.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 10.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 10.3.1
Risolvi per in .
Tocca per altri passaggi...
Passaggio 10.3.1.1
Riscrivi l'equazione come .
Passaggio 10.3.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 10.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 10.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 10.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 10.3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 10.3.2.2.1.1
Moltiplica .
Tocca per altri passaggi...
Passaggio 10.3.2.2.1.1.1
Moltiplica per .
Passaggio 10.3.2.2.1.1.2
Moltiplica per .
Passaggio 10.3.2.2.1.2
Somma e .
Passaggio 10.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 10.3.3.1
Riscrivi l'equazione come .
Passaggio 10.3.3.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 10.3.3.2.1
Dividi per ciascun termine in .
Passaggio 10.3.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 10.3.3.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.3.3.2.2.1.1
Elimina il fattore comune.
Passaggio 10.3.3.2.2.1.2
Dividi per .
Passaggio 10.3.4
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 10.3.4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 10.3.4.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 10.3.4.2.1
Moltiplica per .
Passaggio 10.3.5
Elenca tutte le soluzioni.
Passaggio 10.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 10.5
Semplifica.
Tocca per altri passaggi...
Passaggio 10.5.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 10.5.2
Moltiplica per .
Passaggio 10.5.3
Sposta alla sinistra di .
Passaggio 10.5.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 10.5.5
Moltiplica per .
Passaggio 11
Dividi il singolo integrale in più integrali.
Passaggio 12
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 13
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 14
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 14.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 14.1.1
Differenzia .
Passaggio 14.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 14.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 14.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 14.1.5
Somma e .
Passaggio 14.2
Riscrivi il problema utilizzando e .
Passaggio 15
L'integrale di rispetto a è .
Passaggio 16
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 17
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 17.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 17.1.1
Differenzia .
Passaggio 17.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 17.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 17.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 17.1.5
Somma e .
Passaggio 17.2
Riscrivi il problema utilizzando e .
Passaggio 18
L'integrale di rispetto a è .
Passaggio 19
Semplifica.
Passaggio 20
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 20.1
Sostituisci tutte le occorrenze di con .
Passaggio 20.2
Sostituisci tutte le occorrenze di con .
Passaggio 20.3
Sostituisci tutte le occorrenze di con .