Calcolo Esempi

Valutare l'Integrale integrale di (2x^2-12x+4)/(x^3-4x^2) rispetto a x
Passaggio 1
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 1.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Scomponi la frazione.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1.1.1.1
Scomponi da .
Passaggio 1.1.1.1.2
Scomponi da .
Passaggio 1.1.1.1.3
Scomponi da .
Passaggio 1.1.1.1.4
Scomponi da .
Passaggio 1.1.1.1.5
Scomponi da .
Passaggio 1.1.1.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Scomponi da .
Passaggio 1.1.1.2.2
Scomponi da .
Passaggio 1.1.1.2.3
Scomponi da .
Passaggio 1.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.3
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 1.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.4.1
Elimina il fattore comune.
Passaggio 1.1.4.2
Riscrivi l'espressione.
Passaggio 1.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.5.1
Elimina il fattore comune.
Passaggio 1.1.5.2
Dividi per .
Passaggio 1.1.6
Applica la proprietà distributiva.
Passaggio 1.1.7
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.7.1
Moltiplica per .
Passaggio 1.1.7.2
Moltiplica per .
Passaggio 1.1.8
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.8.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.8.1.1
Elimina il fattore comune.
Passaggio 1.1.8.1.2
Dividi per .
Passaggio 1.1.8.2
Applica la proprietà distributiva.
Passaggio 1.1.8.3
Sposta alla sinistra di .
Passaggio 1.1.8.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 1.1.8.4.1
Scomponi da .
Passaggio 1.1.8.4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.1.8.4.2.1
Eleva alla potenza di .
Passaggio 1.1.8.4.2.2
Scomponi da .
Passaggio 1.1.8.4.2.3
Elimina il fattore comune.
Passaggio 1.1.8.4.2.4
Riscrivi l'espressione.
Passaggio 1.1.8.4.2.5
Dividi per .
Passaggio 1.1.8.5
Applica la proprietà distributiva.
Passaggio 1.1.8.6
Moltiplica per .
Passaggio 1.1.8.7
Sposta alla sinistra di .
Passaggio 1.1.8.8
Applica la proprietà distributiva.
Passaggio 1.1.8.9
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.8.10
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.8.10.1
Elimina il fattore comune.
Passaggio 1.1.8.10.2
Dividi per .
Passaggio 1.1.9
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.9.1
Sposta .
Passaggio 1.1.9.2
Sposta .
Passaggio 1.1.9.3
Sposta .
Passaggio 1.1.9.4
Sposta .
Passaggio 1.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.3
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.4
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 1.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.3.1
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.1.1
Riscrivi l'equazione come .
Passaggio 1.3.1.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.3.1.2.1
Dividi per ciascun termine in .
Passaggio 1.3.1.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.1.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.3.1.2.2.1.1
Elimina il fattore comune.
Passaggio 1.3.1.2.2.1.2
Dividi per .
Passaggio 1.3.1.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.1.2.3.1
Dividi per .
Passaggio 1.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.2.2.1
Rimuovi le parentesi.
Passaggio 1.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Riscrivi l'equazione come .
Passaggio 1.3.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.3.3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.3.3.2.2
Somma e .
Passaggio 1.3.3.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.3.3.3.1
Dividi per ciascun termine in .
Passaggio 1.3.3.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.3.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.3.3.3.2.1.1
Elimina il fattore comune.
Passaggio 1.3.3.3.2.1.2
Dividi per .
Passaggio 1.3.3.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.3.3.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.3.4
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.4.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.4.2.1
Rimuovi le parentesi.
Passaggio 1.3.5
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.5.1
Riscrivi l'equazione come .
Passaggio 1.3.5.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.3.5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.3.5.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.5.2.3
e .
Passaggio 1.3.5.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.5.2.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.3.5.2.5.1
Moltiplica per .
Passaggio 1.3.5.2.5.2
Sottrai da .
Passaggio 1.3.5.2.6
Sposta il negativo davanti alla frazione.
Passaggio 1.3.6
Risolvi il sistema di equazioni.
Passaggio 1.3.7
Elenca tutte le soluzioni.
Passaggio 1.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per , e .
Passaggio 1.5
Semplifica.
Tocca per altri passaggi...
Passaggio 1.5.1
Sposta il negativo davanti alla frazione.
Passaggio 1.5.2
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5.3
Moltiplica per .
Passaggio 1.5.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5.5
Moltiplica per .
Passaggio 1.5.6
Sposta alla sinistra di .
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 4.1
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 4.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 4.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.2.2
Moltiplica per .
Passaggio 5
Secondo la regola di potenza, l'intero di rispetto a è .
Passaggio 6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 7
L'integrale di rispetto a è .
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 10.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 10.1.1
Differenzia .
Passaggio 10.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 10.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 10.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 10.1.5
Somma e .
Passaggio 10.2
Riscrivi il problema utilizzando e .
Passaggio 11
L'integrale di rispetto a è .
Passaggio 12
Semplifica.
Passaggio 13
Sostituisci tutte le occorrenze di con .
Passaggio 14
Riordina i termini.