Inserisci un problema...
Calcolo Esempi
Passaggio 1
Integra per parti usando la formula , dove e .
Passaggio 2
Passaggio 2.1
e .
Passaggio 2.2
Sposta alla sinistra di .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Passaggio 4.1
Moltiplica per .
Passaggio 4.2
Moltiplica per .
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Passaggio 6.1
Sia . Trova .
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Differenzia.
Passaggio 6.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 6.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.3
Calcola .
Passaggio 6.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 6.1.3.3
Moltiplica per .
Passaggio 6.1.4
Somma e .
Passaggio 6.2
Riscrivi il problema utilizzando e .
Passaggio 7
Passaggio 7.1
Moltiplica per .
Passaggio 7.2
Sposta alla sinistra di .
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
Passaggio 9.1
e .
Passaggio 9.2
Elimina il fattore comune di e .
Passaggio 9.2.1
Scomponi da .
Passaggio 9.2.2
Elimina i fattori comuni.
Passaggio 9.2.2.1
Scomponi da .
Passaggio 9.2.2.2
Elimina il fattore comune.
Passaggio 9.2.2.3
Riscrivi l'espressione.
Passaggio 10
L'integrale di rispetto a è .
Passaggio 11
Semplifica.
Passaggio 12
Sostituisci tutte le occorrenze di con .