Calcolo Esempi

Valutare Utilizzando la Regola di L''Hospital limite per x tendente a 0 dalla destra di (1+1/x)^x
Passaggio 1
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 1.1
Scrivi come una frazione con un comune denominatore.
Passaggio 1.2
Riduci i numeratori su un comune denominatore.
Passaggio 2
Usa la proprietà dei logaritmi per semplificare il limite.
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi come .
Passaggio 2.2
Espandi spostando fuori dal logaritmo.
Passaggio 3
Sposta il limite nell'esponente.
Passaggio 4
Riscrivi come .
Passaggio 5
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 5.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 5.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 5.1.2
Con un logaritmo che tende a infinito, il valore diventa .
Passaggio 5.1.3
Poiché il numeratore è una costante e il denominatore tende a quando tende a da destra, la frazione tende a infinito.
Passaggio 5.1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 5.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 5.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 5.3.1
Differenzia numeratore e denominatore.
Passaggio 5.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 5.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 5.3.2.2
La derivata di rispetto a è .
Passaggio 5.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 5.3.3
Moltiplica per il reciproco della frazione per dividere per .
Passaggio 5.3.4
Moltiplica per .
Passaggio 5.3.5
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 5.3.6
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.3.7
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.3.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.3.9
Somma e .
Passaggio 5.3.10
Moltiplica per .
Passaggio 5.3.11
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.3.12
Moltiplica per .
Passaggio 5.3.13
Moltiplica per .
Passaggio 5.3.14
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 5.3.14.1
Scomponi da .
Passaggio 5.3.14.2
Elimina il fattore comune.
Passaggio 5.3.14.3
Riscrivi l'espressione.
Passaggio 5.3.15
Semplifica.
Tocca per altri passaggi...
Passaggio 5.3.15.1
Applica la proprietà distributiva.
Passaggio 5.3.15.2
Applica la proprietà distributiva.
Passaggio 5.3.15.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.3.15.3.1
Sottrai da .
Passaggio 5.3.15.3.2
Sottrai da .
Passaggio 5.3.15.3.3
Moltiplica per .
Passaggio 5.3.15.4
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 5.3.15.4.1
Eleva alla potenza di .
Passaggio 5.3.15.4.2
Eleva alla potenza di .
Passaggio 5.3.15.4.3
Usa la regola della potenza per combinare gli esponenti.
Passaggio 5.3.15.4.4
Somma e .
Passaggio 5.3.15.4.5
Moltiplica per .
Passaggio 5.3.15.4.6
Sposta il negativo davanti alla frazione.
Passaggio 5.3.15.5
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.3.15.5.1
Scomponi da .
Passaggio 5.3.15.5.2
Eleva alla potenza di .
Passaggio 5.3.15.5.3
Scomponi da .
Passaggio 5.3.15.5.4
Scomponi da .
Passaggio 5.3.16
Riscrivi come .
Passaggio 5.3.17
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.3.18
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 5.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5.5
Combina i fattori.
Tocca per altri passaggi...
Passaggio 5.5.1
Moltiplica per .
Passaggio 5.5.2
Moltiplica per .
Passaggio 5.5.3
e .
Passaggio 5.6
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 5.6.1
Scomponi da .
Passaggio 5.6.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 5.6.2.1
Elimina il fattore comune.
Passaggio 5.6.2.2
Riscrivi l'espressione.
Passaggio 6
Calcola il limite.
Tocca per altri passaggi...
Passaggio 6.1
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 6.2
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 6.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 7
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 7.1
Calcola il limite di inserendo per .
Passaggio 7.2
Calcola il limite di inserendo per .
Passaggio 8
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 8.1
Somma e .
Passaggio 8.2
Dividi per .
Passaggio 9
Qualsiasi valore elevato a è .