Algebra Esempi

Dimostrare che una Radice è nell'Intervallo x^3+7x-2=y , [0,10]
,
Passaggio 1
Riscrivi l'equazione come .
Passaggio 2
Secondo il teorema dei valori intermedi, se è una funzione continua a valore reale sull'intervallo e è un numero tra e , allora esiste un punto contenuto nell'intervallo tale che .
Passaggio 3
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 4
Calcola .
Tocca per altri passaggi...
Passaggio 4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.1.2
Moltiplica per .
Passaggio 4.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 4.2.1
Somma e .
Passaggio 4.2.2
Sottrai da .
Passaggio 5
Calcola .
Tocca per altri passaggi...
Passaggio 5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.1.1
Eleva alla potenza di .
Passaggio 5.1.2
Moltiplica per .
Passaggio 5.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 5.2.1
Somma e .
Passaggio 5.2.2
Sottrai da .
Passaggio 6
Rappresenta graficamente ogni lato dell'equazione. La soluzione è il valore x del punto di intersezione.
Passaggio 7
Secondo il teorema dei valori intermedi, esiste una radice sull'intervallo perché è una funzione continua su .
Le radici dell'intervallo si trovano con .
Passaggio 8