Inserisci un problema...
Algebra Esempi
Passaggio 1
Differenzia entrambi i lati dell'equazione.
Passaggio 2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3
Passaggio 3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.2
Calcola .
Passaggio 3.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.2.3
Moltiplica per .
Passaggio 3.3
Calcola .
Passaggio 3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.3
Moltiplica per .
Passaggio 3.4
Differenzia usando la regola della costante.
Passaggio 3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.2
Somma e .
Passaggio 4
Forma nuovamente l'equazione eguagliando il lato sinistro al lato destro.
Passaggio 5
Passaggio 5.1
Poiché si trova sul lato destro dell'equazione, inverti i lati così che si trovi sul lato sinistro.
Passaggio 5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.3
Dividi per ciascun termine in e semplifica.
Passaggio 5.3.1
Dividi per ciascun termine in .
Passaggio 5.3.2
Semplifica il lato sinistro.
Passaggio 5.3.2.1
Elimina il fattore comune di .
Passaggio 5.3.2.1.1
Elimina il fattore comune.
Passaggio 5.3.2.1.2
Dividi per .
Passaggio 5.3.3
Semplifica il lato destro.
Passaggio 5.3.3.1
Dividi per .
Passaggio 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 5.5
Riscrivi come .
Passaggio 5.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 5.6.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 5.6.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 5.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 6
Sostituisci con .