Inserisci un problema...
Algebra Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata seconda.
Passaggio 1.1.1
Trova la derivata prima.
Passaggio 1.1.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.1.2
La derivata di rispetto a è .
Passaggio 1.1.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.1.2
Differenzia.
Passaggio 1.1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.4
Riduci le frazioni.
Passaggio 1.1.1.2.4.1
Somma e .
Passaggio 1.1.1.2.4.2
e .
Passaggio 1.1.1.2.4.3
e .
Passaggio 1.1.2
Trova la derivata seconda.
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 1.1.2.3
Differenzia.
Passaggio 1.1.2.3.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3.2
Moltiplica per .
Passaggio 1.1.2.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.3.6
Semplifica l'espressione.
Passaggio 1.1.2.3.6.1
Somma e .
Passaggio 1.1.2.3.6.2
Moltiplica per .
Passaggio 1.1.2.4
Eleva alla potenza di .
Passaggio 1.1.2.5
Eleva alla potenza di .
Passaggio 1.1.2.6
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.2.7
Somma e .
Passaggio 1.1.2.8
Sottrai da .
Passaggio 1.1.2.9
e .
Passaggio 1.1.2.10
Semplifica.
Passaggio 1.1.2.10.1
Applica la proprietà distributiva.
Passaggio 1.1.2.10.2
Semplifica ciascun termine.
Passaggio 1.1.2.10.2.1
Moltiplica per .
Passaggio 1.1.2.10.2.2
Moltiplica per .
Passaggio 1.1.3
La derivata seconda di rispetto a è .
Passaggio 1.2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Passaggio 1.2.1
Imposta la derivata seconda uguale a .
Passaggio 1.2.2
Poni il numeratore uguale a zero.
Passaggio 1.2.3
Risolvi l'equazione per .
Passaggio 1.2.3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2.3.2
Dividi per ciascun termine in e semplifica.
Passaggio 1.2.3.2.1
Dividi per ciascun termine in .
Passaggio 1.2.3.2.2
Semplifica il lato sinistro.
Passaggio 1.2.3.2.2.1
Elimina il fattore comune di .
Passaggio 1.2.3.2.2.1.1
Elimina il fattore comune.
Passaggio 1.2.3.2.2.1.2
Dividi per .
Passaggio 1.2.3.2.3
Semplifica il lato destro.
Passaggio 1.2.3.2.3.1
Dividi per .
Passaggio 1.2.3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 1.2.3.4
Qualsiasi radice di è .
Passaggio 1.2.3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.2.3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 1.2.3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 1.2.3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2
Passaggio 2.1
Imposta l'argomento in in modo che sia maggiore di per individuare dove l'espressione è definita.
Passaggio 2.2
Risolvi per .
Passaggio 2.2.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 2.2.2
Poiché il lato sinistro presenta una potenza pari, è sempre positivo per tutti i numeri reali.
Tutti i numeri reali
Tutti i numeri reali
Passaggio 2.3
Il dominio è l'insieme di numeri reali.
Notazione degli intervalli:
Notazione intensiva:
Notazione degli intervalli:
Notazione intensiva:
Passaggio 3
Crea intervalli attorno ai valori di per cui la derivata seconda è zero o indefinita.
Passaggio 4
Passaggio 4.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.2
Semplifica il risultato.
Passaggio 4.2.1
Semplifica il numeratore.
Passaggio 4.2.1.1
Eleva alla potenza di .
Passaggio 4.2.1.2
Moltiplica per .
Passaggio 4.2.1.3
Somma e .
Passaggio 4.2.2
Semplifica il denominatore.
Passaggio 4.2.2.1
Eleva alla potenza di .
Passaggio 4.2.2.2
Somma e .
Passaggio 4.2.2.3
Eleva alla potenza di .
Passaggio 4.2.3
Sposta il negativo davanti alla frazione.
Passaggio 4.2.4
La risposta finale è .
Passaggio 4.3
Il grafico è una funzione concava sull'intervallo perché è negativo.
Funzione concava su poiché è negativo
Funzione concava su poiché è negativo
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Semplifica il numeratore.
Passaggio 5.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Somma e .
Passaggio 5.2.2
Semplifica il denominatore.
Passaggio 5.2.2.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.2.2.3
Uno elevato a qualsiasi potenza è uno.
Passaggio 5.2.3
Dividi per .
Passaggio 5.2.4
La risposta finale è .
Passaggio 5.3
Il grafico è una funzione convessa sull'intervallo perché è positivo.
Funzione convessa su poiché è positivo
Funzione convessa su poiché è positivo
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica il numeratore.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Somma e .
Passaggio 6.2.2
Semplifica il denominatore.
Passaggio 6.2.2.1
Eleva alla potenza di .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.2.3
Eleva alla potenza di .
Passaggio 6.2.3
Sposta il negativo davanti alla frazione.
Passaggio 6.2.4
La risposta finale è .
Passaggio 6.3
Il grafico è una funzione concava sull'intervallo perché è negativo.
Funzione concava su poiché è negativo
Funzione concava su poiché è negativo
Passaggio 7
Il grafico è una funzione concava quando la derivata seconda è negativa, mentre è una funzione convessa quando la derivata seconda è positiva.
Funzione concava su poiché è negativo
Funzione convessa su poiché è positivo
Funzione concava su poiché è negativo
Passaggio 8