Algebra Esempi

Trovare le Radici/Zeri usando il Teorema delle Radici Razionali 60x^2-57x-18
Passaggio 1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 3
Nel polinomio, sostituisci le possibili radici una alla volta per trovare le radici effettive. Semplifica per verificare se il valore è ; ciò significa che è una radice.
Passaggio 4
Semplifica l'espressione. In questo caso, l'espressione è uguale a , quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.1
Utilizza la regola per la potenza di una potenza per distribuire l'esponente.
Tocca per altri passaggi...
Passaggio 4.1.1.1
Applica la regola del prodotto a .
Passaggio 4.1.1.2
Applica la regola del prodotto a .
Passaggio 4.1.2
Eleva alla potenza di .
Passaggio 4.1.3
Moltiplica per .
Passaggio 4.1.4
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.5
Eleva alla potenza di .
Passaggio 4.1.6
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.6.1
Scomponi da .
Passaggio 4.1.6.2
Scomponi da .
Passaggio 4.1.6.3
Elimina il fattore comune.
Passaggio 4.1.6.4
Riscrivi l'espressione.
Passaggio 4.1.7
e .
Passaggio 4.1.8
Moltiplica .
Tocca per altri passaggi...
Passaggio 4.1.8.1
Moltiplica per .
Passaggio 4.1.8.2
e .
Passaggio 4.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 4.2.1
Riduci i numeratori su un comune denominatore.
Passaggio 4.2.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Somma e .
Passaggio 4.2.2.2
Dividi per .
Passaggio 4.2.2.3
Somma e .
Passaggio 5
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può essere utilizzato per trovare le restanti radici.
Passaggio 6
Ora, trova le radici del polinomio rimanente. L'ordine del polinomio è stato ridotto di .
Tocca per altri passaggi...
Passaggio 6.1
Inserisci i numeri che rappresentano il divisore e il dividendo in una configurazione da divisione.
  
Passaggio 6.2
Il primo numero nel dividendo è messo nella prima posizione dell'area risultante (al di sotto della retta orizzontale).
  
Passaggio 6.3
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
  
Passaggio 6.4
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
  
Passaggio 6.5
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
 
Passaggio 6.6
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
 
Passaggio 6.7
Tutti i numeri eccetto l'ultimo diventano i coefficienti del polinomio quoziente. L'ultimo valore nella riga del risultato è il resto.
Passaggio 6.8
Semplifica il polinomio quoziente.
Passaggio 7
Scomponi da .
Tocca per altri passaggi...
Passaggio 7.1
Scomponi da .
Passaggio 7.2
Scomponi da .
Passaggio 7.3
Scomponi da .
Passaggio 8
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 8.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 8.1.1
Scomponi da .
Passaggio 8.1.2
Scomponi da .
Passaggio 8.1.3
Scomponi da .
Passaggio 8.1.4
Scomponi da .
Passaggio 8.1.5
Scomponi da .
Passaggio 8.2
Scomponi.
Tocca per altri passaggi...
Passaggio 8.2.1
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 8.2.1.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 8.2.1.1.1
Scomponi da .
Passaggio 8.2.1.1.2
Riscrivi come più .
Passaggio 8.2.1.1.3
Applica la proprietà distributiva.
Passaggio 8.2.1.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 8.2.1.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 8.2.1.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 8.2.1.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 8.2.2
Rimuovi le parentesi non necessarie.
Passaggio 9
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 10
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 10.1
Imposta uguale a .
Passaggio 10.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 10.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 10.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 10.2.2.1
Dividi per ciascun termine in .
Passaggio 10.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 10.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 10.2.2.2.1.1
Elimina il fattore comune.
Passaggio 10.2.2.2.1.2
Dividi per .
Passaggio 10.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 10.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 11
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 11.1
Imposta uguale a .
Passaggio 11.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 11.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 11.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 11.2.2.1
Dividi per ciascun termine in .
Passaggio 11.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 11.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 11.2.2.2.1.1
Elimina il fattore comune.
Passaggio 11.2.2.2.1.2
Dividi per .
Passaggio 12
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 13