Algebra Esempi

表示为v的函数 v(r)=4/3pir^3
Passaggio 1
Semplifica .
Tocca per altri passaggi...
Passaggio 1.1
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.1.1
e .
Passaggio 1.1.2
e .
Passaggio 1.2
Sposta alla sinistra di .
Passaggio 2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3
Scomponi da .
Tocca per altri passaggi...
Passaggio 3.1
Scomponi da .
Passaggio 3.2
Scomponi da .
Passaggio 3.3
Scomponi da .
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5
Imposta uguale a .
Passaggio 6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.2.2
Moltiplica entrambi i lati dell'equazione per .
Passaggio 6.2.3
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 6.2.3.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.2.3.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 6.2.3.1.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.3.1.1.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 6.2.3.1.1.1.2
Sposta il negativo all'inizio di nel numeratore.
Passaggio 6.2.3.1.1.1.3
Scomponi da .
Passaggio 6.2.3.1.1.1.4
Elimina il fattore comune.
Passaggio 6.2.3.1.1.1.5
Riscrivi l'espressione.
Passaggio 6.2.3.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.3.1.1.2.1
Scomponi da .
Passaggio 6.2.3.1.1.2.2
Elimina il fattore comune.
Passaggio 6.2.3.1.1.2.3
Riscrivi l'espressione.
Passaggio 6.2.3.1.1.3
Moltiplica.
Tocca per altri passaggi...
Passaggio 6.2.3.1.1.3.1
Moltiplica per .
Passaggio 6.2.3.1.1.3.2
Moltiplica per .
Passaggio 6.2.3.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.2.3.2.1
Moltiplica .
Tocca per altri passaggi...
Passaggio 6.2.3.2.1.1
Moltiplica per .
Passaggio 6.2.3.2.1.2
Moltiplica per .
Passaggio 6.2.3.2.1.3
e .
Passaggio 6.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 6.2.5
Semplifica .
Tocca per altri passaggi...
Passaggio 6.2.5.1
Riscrivi come .
Tocca per altri passaggi...
Passaggio 6.2.5.1.1
Scomponi la potenza perfetta su .
Passaggio 6.2.5.1.2
Scomponi la potenza perfetta su .
Passaggio 6.2.5.1.3
Riordina la frazione .
Passaggio 6.2.5.2
Estrai i termini dal radicale.
Passaggio 6.2.5.3
Riscrivi come .
Passaggio 6.2.5.4
Moltiplica per .
Passaggio 6.2.5.5
Combina e semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 6.2.5.5.1
Moltiplica per .
Passaggio 6.2.5.5.2
Eleva alla potenza di .
Passaggio 6.2.5.5.3
Eleva alla potenza di .
Passaggio 6.2.5.5.4
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 6.2.5.5.5
Somma e .
Passaggio 6.2.5.5.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 6.2.5.5.6.1
Usa per riscrivere come .
Passaggio 6.2.5.5.6.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 6.2.5.5.6.3
e .
Passaggio 6.2.5.5.6.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.5.5.6.4.1
Elimina il fattore comune.
Passaggio 6.2.5.5.6.4.2
Riscrivi l'espressione.
Passaggio 6.2.5.5.6.5
Semplifica.
Passaggio 6.2.5.6
Combina usando la regola del prodotto per i radicali.
Passaggio 6.2.5.7
Moltiplica per .
Passaggio 6.2.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 6.2.6.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 6.2.6.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 6.2.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 8
Per riscrivere come una funzione di , scrivi l'equazione in modo che si trovi da solo da un lato del segno uguale, e che dall'altro si trovi un'espressione che riguarda solo .