Inserisci un problema...
Algebra Esempi
Passaggio 1
Riscrivi come .
Passaggio 2
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 3
Passaggio 3.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 3.1.1
Scomponi da .
Passaggio 3.1.2
Riscrivi come più .
Passaggio 3.1.3
Applica la proprietà distributiva.
Passaggio 3.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 3.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 4
Sostituisci tutte le occorrenze di con .
Passaggio 5
Riscrivi come .
Passaggio 6
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 7
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 8
Passaggio 8.1
Imposta uguale a .
Passaggio 8.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 9
Passaggio 9.1
Imposta uguale a .
Passaggio 9.2
Somma a entrambi i lati dell'equazione.
Passaggio 10
Passaggio 10.1
Imposta uguale a .
Passaggio 10.2
Risolvi per .
Passaggio 10.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 10.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 10.2.2.1
Dividi per ciascun termine in .
Passaggio 10.2.2.2
Semplifica il lato sinistro.
Passaggio 10.2.2.2.1
Elimina il fattore comune di .
Passaggio 10.2.2.2.1.1
Elimina il fattore comune.
Passaggio 10.2.2.2.1.2
Dividi per .
Passaggio 10.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 10.2.4
Semplifica .
Passaggio 10.2.4.1
Riscrivi come .
Passaggio 10.2.4.2
Moltiplica per .
Passaggio 10.2.4.3
Combina e semplifica il denominatore.
Passaggio 10.2.4.3.1
Moltiplica per .
Passaggio 10.2.4.3.2
Eleva alla potenza di .
Passaggio 10.2.4.3.3
Eleva alla potenza di .
Passaggio 10.2.4.3.4
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 10.2.4.3.5
Somma e .
Passaggio 10.2.4.3.6
Riscrivi come .
Passaggio 10.2.4.3.6.1
Usa per riscrivere come .
Passaggio 10.2.4.3.6.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 10.2.4.3.6.3
e .
Passaggio 10.2.4.3.6.4
Elimina il fattore comune di .
Passaggio 10.2.4.3.6.4.1
Elimina il fattore comune.
Passaggio 10.2.4.3.6.4.2
Riscrivi l'espressione.
Passaggio 10.2.4.3.6.5
Calcola l'esponente.
Passaggio 10.2.4.4
Semplifica il numeratore.
Passaggio 10.2.4.4.1
Combina usando la regola del prodotto per i radicali.
Passaggio 10.2.4.4.2
Moltiplica per .
Passaggio 10.2.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 10.2.5.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 10.2.5.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 10.2.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 11
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 12
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale: