Algebra Esempi

Fattore p(x)=x^5-4x^3-2x^2-4x
Passaggio 1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1
Scomponi da .
Passaggio 1.2
Scomponi da .
Passaggio 1.3
Scomponi da .
Passaggio 1.4
Scomponi da .
Passaggio 1.5
Scomponi da .
Passaggio 1.6
Scomponi da .
Passaggio 1.7
Scomponi da .
Passaggio 2
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 2.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 2.3.1
Sostituisci nel polinomio.
Passaggio 2.3.2
Eleva alla potenza di .
Passaggio 2.3.3
Eleva alla potenza di .
Passaggio 2.3.4
Moltiplica per .
Passaggio 2.3.5
Sottrai da .
Passaggio 2.3.6
Moltiplica per .
Passaggio 2.3.7
Somma e .
Passaggio 2.3.8
Sottrai da .
Passaggio 2.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.5
Dividi per .
Tocca per altri passaggi...
Passaggio 2.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
++---
Passaggio 2.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++---
Passaggio 2.5.3
Moltiplica il nuovo quoziente per il divisore.
++---
++
Passaggio 2.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++---
--
Passaggio 2.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++---
--
-
Passaggio 2.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
++---
--
--
Passaggio 2.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-
++---
--
--
Passaggio 2.5.8
Moltiplica il nuovo quoziente per il divisore.
-
++---
--
--
--
Passaggio 2.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-
++---
--
--
++
Passaggio 2.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-
++---
--
--
++
Passaggio 2.5.11
Abbassa il termine successivo dal dividendo originale nel dividendo attuale.
-
++---
--
--
++
--
Passaggio 2.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+-
++---
--
--
++
--
Passaggio 2.5.13
Moltiplica il nuovo quoziente per il divisore.
-+-
++---
--
--
++
--
--
Passaggio 2.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+-
++---
--
--
++
--
++
Passaggio 2.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+-
++---
--
--
++
--
++
Passaggio 2.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.6
Scrivi come insieme di fattori.
Passaggio 3
Moltiplica per .
Passaggio 4
Scomponi.
Tocca per altri passaggi...
Passaggio 4.1
Somma e .
Passaggio 4.2
Rimuovi le parentesi non necessarie.