Inserisci un problema...
Algebra Esempi
Passaggio 1
Passaggio 1.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 1.2
Dividi per ciascun termine in e semplifica.
Passaggio 1.2.1
Dividi per ciascun termine in .
Passaggio 1.2.2
Semplifica il lato sinistro.
Passaggio 1.2.2.1
Elimina il fattore comune di .
Passaggio 1.2.2.1.1
Elimina il fattore comune.
Passaggio 1.2.2.1.2
Dividi per .
Passaggio 1.2.3
Semplifica il lato destro.
Passaggio 1.2.3.1
Semplifica ciascun termine.
Passaggio 1.2.3.1.1
Dividi per .
Passaggio 1.2.3.1.2
Sposta il negativo davanti alla frazione.
Passaggio 1.3
Trova la radice quadrata specificata di entrambi i lati della diseguaglianza per eliminare l'esponente sul lato sinistro.
Passaggio 1.4
Semplifica l'equazione.
Passaggio 1.4.1
Semplifica il lato sinistro.
Passaggio 1.4.1.1
Estrai i termini dal radicale.
Passaggio 1.4.2
Semplifica il lato destro.
Passaggio 1.4.2.1
Semplifica .
Passaggio 1.4.2.1.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.4.2.1.2
e .
Passaggio 1.4.2.1.3
Riduci i numeratori su un comune denominatore.
Passaggio 1.4.2.1.4
Scomponi da .
Passaggio 1.4.2.1.4.1
Scomponi da .
Passaggio 1.4.2.1.4.2
Scomponi da .
Passaggio 1.4.2.1.4.3
Scomponi da .
Passaggio 1.4.2.1.5
Riscrivi come .
Passaggio 1.4.2.1.6
Moltiplica per .
Passaggio 1.4.2.1.7
Combina e semplifica il denominatore.
Passaggio 1.4.2.1.7.1
Moltiplica per .
Passaggio 1.4.2.1.7.2
Eleva alla potenza di .
Passaggio 1.4.2.1.7.3
Eleva alla potenza di .
Passaggio 1.4.2.1.7.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.4.2.1.7.5
Somma e .
Passaggio 1.4.2.1.7.6
Riscrivi come .
Passaggio 1.4.2.1.7.6.1
Usa per riscrivere come .
Passaggio 1.4.2.1.7.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 1.4.2.1.7.6.3
e .
Passaggio 1.4.2.1.7.6.4
Elimina il fattore comune di .
Passaggio 1.4.2.1.7.6.4.1
Elimina il fattore comune.
Passaggio 1.4.2.1.7.6.4.2
Riscrivi l'espressione.
Passaggio 1.4.2.1.7.6.5
Calcola l'esponente.
Passaggio 1.4.2.1.8
Semplifica il numeratore.
Passaggio 1.4.2.1.8.1
Combina usando la regola del prodotto per i radicali.
Passaggio 1.4.2.1.8.2
Moltiplica per .
Passaggio 1.5
Scrivi a tratti.
Passaggio 1.5.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 1.5.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 1.5.3
Individua il dominio di e trova l'intersezione con .
Passaggio 1.5.3.1
Trova il dominio di .
Passaggio 1.5.3.1.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 1.5.3.1.2
Risolvi per .
Passaggio 1.5.3.1.2.1
Dividi per ciascun termine in e semplifica.
Passaggio 1.5.3.1.2.1.1
Dividi per ciascun termine in .
Passaggio 1.5.3.1.2.1.2
Semplifica il lato sinistro.
Passaggio 1.5.3.1.2.1.2.1
Elimina il fattore comune di .
Passaggio 1.5.3.1.2.1.2.1.1
Elimina il fattore comune.
Passaggio 1.5.3.1.2.1.2.1.2
Dividi per .
Passaggio 1.5.3.1.2.1.3
Semplifica il lato destro.
Passaggio 1.5.3.1.2.1.3.1
Dividi per .
Passaggio 1.5.3.1.2.2
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 1.5.3.1.2.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.5.3.1.2.3.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 1.5.3.1.2.3.2
Semplifica il lato sinistro.
Passaggio 1.5.3.1.2.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.5.3.1.2.3.2.2
Dividi per .
Passaggio 1.5.3.1.2.3.3
Semplifica il lato destro.
Passaggio 1.5.3.1.2.3.3.1
Dividi per .
Passaggio 1.5.3.1.2.4
Trova la radice quadrata specificata di entrambi i lati della diseguaglianza per eliminare l'esponente sul lato sinistro.
Passaggio 1.5.3.1.2.5
Semplifica il lato sinistro.
Passaggio 1.5.3.1.2.5.1
Estrai i termini dal radicale.
Passaggio 1.5.3.1.2.6
Scrivi a tratti.
Passaggio 1.5.3.1.2.6.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 1.5.3.1.2.6.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 1.5.3.1.2.6.3
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 1.5.3.1.2.6.4
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 1.5.3.1.2.6.5
Scrivi a tratti.
Passaggio 1.5.3.1.2.7
Trova l'intersezione di e .
Passaggio 1.5.3.1.2.8
Risolvi dove .
Passaggio 1.5.3.1.2.8.1
Dividi per ciascun termine in e semplifica.
Passaggio 1.5.3.1.2.8.1.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 1.5.3.1.2.8.1.2
Semplifica il lato sinistro.
Passaggio 1.5.3.1.2.8.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.5.3.1.2.8.1.2.2
Dividi per .
Passaggio 1.5.3.1.2.8.1.3
Semplifica il lato destro.
Passaggio 1.5.3.1.2.8.1.3.1
Sposta quello negativo dal denominatore di .
Passaggio 1.5.3.1.2.8.1.3.2
Riscrivi come .
Passaggio 1.5.3.1.2.8.2
Trova l'intersezione di e .
Passaggio 1.5.3.1.2.9
Trova l'unione delle soluzioni.
Passaggio 1.5.3.1.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 1.5.3.2
Trova l'intersezione di e .
Passaggio 1.5.4
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 1.5.5
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 1.5.6
Individua il dominio di e trova l'intersezione con .
Passaggio 1.5.6.1
Trova il dominio di .
Passaggio 1.5.6.1.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 1.5.6.1.2
Risolvi per .
Passaggio 1.5.6.1.2.1
Dividi per ciascun termine in e semplifica.
Passaggio 1.5.6.1.2.1.1
Dividi per ciascun termine in .
Passaggio 1.5.6.1.2.1.2
Semplifica il lato sinistro.
Passaggio 1.5.6.1.2.1.2.1
Elimina il fattore comune di .
Passaggio 1.5.6.1.2.1.2.1.1
Elimina il fattore comune.
Passaggio 1.5.6.1.2.1.2.1.2
Dividi per .
Passaggio 1.5.6.1.2.1.3
Semplifica il lato destro.
Passaggio 1.5.6.1.2.1.3.1
Dividi per .
Passaggio 1.5.6.1.2.2
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 1.5.6.1.2.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.5.6.1.2.3.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 1.5.6.1.2.3.2
Semplifica il lato sinistro.
Passaggio 1.5.6.1.2.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.5.6.1.2.3.2.2
Dividi per .
Passaggio 1.5.6.1.2.3.3
Semplifica il lato destro.
Passaggio 1.5.6.1.2.3.3.1
Dividi per .
Passaggio 1.5.6.1.2.4
Trova la radice quadrata specificata di entrambi i lati della diseguaglianza per eliminare l'esponente sul lato sinistro.
Passaggio 1.5.6.1.2.5
Semplifica il lato sinistro.
Passaggio 1.5.6.1.2.5.1
Estrai i termini dal radicale.
Passaggio 1.5.6.1.2.6
Scrivi a tratti.
Passaggio 1.5.6.1.2.6.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 1.5.6.1.2.6.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 1.5.6.1.2.6.3
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 1.5.6.1.2.6.4
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 1.5.6.1.2.6.5
Scrivi a tratti.
Passaggio 1.5.6.1.2.7
Trova l'intersezione di e .
Passaggio 1.5.6.1.2.8
Risolvi dove .
Passaggio 1.5.6.1.2.8.1
Dividi per ciascun termine in e semplifica.
Passaggio 1.5.6.1.2.8.1.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 1.5.6.1.2.8.1.2
Semplifica il lato sinistro.
Passaggio 1.5.6.1.2.8.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.5.6.1.2.8.1.2.2
Dividi per .
Passaggio 1.5.6.1.2.8.1.3
Semplifica il lato destro.
Passaggio 1.5.6.1.2.8.1.3.1
Sposta quello negativo dal denominatore di .
Passaggio 1.5.6.1.2.8.1.3.2
Riscrivi come .
Passaggio 1.5.6.1.2.8.2
Trova l'intersezione di e .
Passaggio 1.5.6.1.2.9
Trova l'unione delle soluzioni.
Passaggio 1.5.6.1.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 1.5.6.2
Trova l'intersezione di e .
Passaggio 1.5.7
Scrivi a tratti.
Passaggio 1.6
Trova l'intersezione di e .
Passaggio 1.7
Risolvi dove .
Passaggio 1.7.1
Dividi per ciascun termine in e semplifica.
Passaggio 1.7.1.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 1.7.1.2
Semplifica il lato sinistro.
Passaggio 1.7.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.7.1.2.2
Dividi per .
Passaggio 1.7.1.3
Semplifica il lato destro.
Passaggio 1.7.1.3.1
Sposta quello negativo dal denominatore di .
Passaggio 1.7.1.3.2
Riscrivi come .
Passaggio 1.7.2
Trova l'intersezione di e .
Nessuna soluzione
Nessuna soluzione
Passaggio 1.8
Trova l'unione delle soluzioni.
Passaggio 2
Trova l'intersezione di e .
Nessuna soluzione