Inserisci un problema...
Algebra Esempi
Passaggio 1
Passaggio 1.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 1.2
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 2
Passaggio 2.1
Moltiplica ogni termine in per .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica ciascun termine.
Passaggio 2.2.1.1
Moltiplica per .
Passaggio 2.2.1.2
Elimina il fattore comune di .
Passaggio 2.2.1.2.1
Elimina il fattore comune.
Passaggio 2.2.1.2.2
Riscrivi l'espressione.
Passaggio 3
Passaggio 3.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 3.2
Converti la diseguaglianza in un'equazione.
Passaggio 3.3
Scomponi usando la regola del quadrato perfetto.
Passaggio 3.3.1
Rimetti in ordine i termini.
Passaggio 3.3.2
Riscrivi come .
Passaggio 3.3.3
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 3.3.4
Riscrivi il polinomio.
Passaggio 3.3.5
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 3.4
Poni uguale a .
Passaggio 3.5
Somma a entrambi i lati dell'equazione.
Passaggio 4
Passaggio 4.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4.2
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 5
Usa ogni radice per creare gli intervalli di prova.
Passaggio 6
Passaggio 6.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.1.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 6.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.2.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 6.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.3.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 6.4
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Vero
Vero
Falso
Vero
Vero
Passaggio 7
La soluzione è costituita da tutti gli intervalli veri.
o
Passaggio 8
Combina gli intervalli.
Passaggio 9
Il risultato può essere mostrato in più forme.
Forma della diseguaglianza:
Notazione degli intervalli:
Passaggio 10