Inserisci un problema...
Algebra Esempi
Passaggio 1
Per rimuovere il radicale del lato sinistro della diseguaglianza, eleva al quadrato entrambi i lati della diseguaglianza.
Passaggio 2
Passaggio 2.1
Usa per riscrivere come .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica .
Passaggio 2.2.1.1
Moltiplica gli esponenti in .
Passaggio 2.2.1.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.1.2
Elimina il fattore comune di .
Passaggio 2.2.1.1.2.1
Elimina il fattore comune.
Passaggio 2.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 2.2.1.2
Semplifica.
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Semplifica .
Passaggio 2.3.1.1
Scomponi da .
Passaggio 2.3.1.1.1
Scomponi da .
Passaggio 2.3.1.1.2
Scomponi da .
Passaggio 2.3.1.1.3
Scomponi da .
Passaggio 2.3.1.2
Riscrivi come .
Passaggio 2.3.1.2.1
Usa per riscrivere come .
Passaggio 2.3.1.2.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.3.1.2.3
e .
Passaggio 2.3.1.2.4
Elimina il fattore comune di .
Passaggio 2.3.1.2.4.1
Elimina il fattore comune.
Passaggio 2.3.1.2.4.2
Riscrivi l'espressione.
Passaggio 2.3.1.2.5
Semplifica.
Passaggio 2.3.1.3
Applica la proprietà distributiva.
Passaggio 2.3.1.4
Moltiplica per .
Passaggio 3
Passaggio 3.1
Sposta tutti i termini contenenti sul lato sinistro della diseguaglianza.
Passaggio 3.1.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 3.1.2
Sottrai da .
Passaggio 3.2
Sposta tutti i termini non contenenti sul lato destro della diseguaglianza.
Passaggio 3.2.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 3.2.2
Sottrai da .
Passaggio 3.3
Dividi per ciascun termine in e semplifica.
Passaggio 3.3.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 3.3.2
Semplifica il lato sinistro.
Passaggio 3.3.2.1
Elimina il fattore comune di .
Passaggio 3.3.2.1.1
Elimina il fattore comune.
Passaggio 3.3.2.1.2
Dividi per .
Passaggio 3.3.3
Semplifica il lato destro.
Passaggio 3.3.3.1
Sposta il negativo davanti alla frazione.
Passaggio 4
Passaggio 4.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4.2
Risolvi per .
Passaggio 4.2.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 4.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 4.2.2.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 4.2.2.2
Semplifica il lato sinistro.
Passaggio 4.2.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.2.2.2.2
Dividi per .
Passaggio 4.2.2.3
Semplifica il lato destro.
Passaggio 4.2.2.3.1
Dividi per .
Passaggio 4.3
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4.4
Risolvi per .
Passaggio 4.4.1
Dividi per ciascun termine in e semplifica.
Passaggio 4.4.1.1
Dividi per ciascun termine in .
Passaggio 4.4.1.2
Semplifica il lato sinistro.
Passaggio 4.4.1.2.1
Elimina il fattore comune di .
Passaggio 4.4.1.2.1.1
Elimina il fattore comune.
Passaggio 4.4.1.2.1.2
Dividi per .
Passaggio 4.4.1.3
Semplifica il lato destro.
Passaggio 4.4.1.3.1
Dividi per .
Passaggio 4.4.2
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 4.5
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 5
Usa ogni radice per creare gli intervalli di prova.
Passaggio 6
Passaggio 6.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.1.3
Il lato sinistro non è uguale al lato destro, il che significa che l'affermazione è falsa.
Falso
Falso
Passaggio 6.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.2.3
Il lato sinistro di non è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 6.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.3.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 6.4
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.4.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.4.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.4.3
Il lato sinistro non è uguale al lato destro, il che significa che l'affermazione è falsa.
Falso
Falso
Passaggio 6.5
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Falso
Vero
Falso
Falso
Falso
Vero
Falso
Passaggio 7
La soluzione è costituita da tutti gli intervalli veri.
Passaggio 8
Il risultato può essere mostrato in più forme.
Forma della diseguaglianza:
Notazione degli intervalli:
Passaggio 9