Inserisci un problema...
Algebra Esempi
Passaggio 1
Moltiplica ogni lato per .
Passaggio 2
Passaggio 2.1
Semplifica il lato sinistro.
Passaggio 2.1.1
Semplifica .
Passaggio 2.1.1.1
Applica la proprietà distributiva.
Passaggio 2.1.1.2
Moltiplica per .
Passaggio 2.2
Semplifica il lato destro.
Passaggio 2.2.1
Elimina il fattore comune di .
Passaggio 2.2.1.1
Elimina il fattore comune.
Passaggio 2.2.1.2
Riscrivi l'espressione.
Passaggio 3
Passaggio 3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2
Usa la formula quadratica per trovare le soluzioni.
Passaggio 3.3
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 3.4
Semplifica.
Passaggio 3.4.1
Semplifica il numeratore.
Passaggio 3.4.1.1
Eleva alla potenza di .
Passaggio 3.4.1.2
Moltiplica .
Passaggio 3.4.1.2.1
Moltiplica per .
Passaggio 3.4.1.2.2
Moltiplica per .
Passaggio 3.4.1.3
Somma e .
Passaggio 3.4.1.4
Riscrivi come .
Passaggio 3.4.1.4.1
Scomponi da .
Passaggio 3.4.1.4.2
Riscrivi come .
Passaggio 3.4.1.5
Estrai i termini dal radicale.
Passaggio 3.4.2
Moltiplica per .
Passaggio 3.4.3
Semplifica .
Passaggio 3.5
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 4
Passaggio 4.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4.2
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 5
Usa ogni radice per creare gli intervalli di prova.
Passaggio 6
Passaggio 6.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.1.3
Il lato sinistro di non è maggiore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 6.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.2.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 6.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.3.3
Il lato sinistro di non è maggiore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 6.4
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.4.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.4.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.4.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 6.5
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Vero
Falso
Vero
Falso
Vero
Falso
Vero
Passaggio 7
La soluzione è costituita da tutti gli intervalli veri.
o
Passaggio 8
Il risultato può essere mostrato in più forme.
Forma della diseguaglianza:
Notazione degli intervalli:
Passaggio 9