Algebra Esempi

求解x₂ d = square root of (x_2-x_1)^2+(y_2-y_1)^2
Passaggio 1
Riscrivi l'equazione come .
Passaggio 2
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al quadrato entrambi i lati dell'equazione.
Passaggio 3
Semplifica ogni lato dell'equazione.
Tocca per altri passaggi...
Passaggio 3.1
Usa per riscrivere come .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.1.1
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.1.2
Semplifica.
Passaggio 4
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 4.3
Semplifica .
Tocca per altri passaggi...
Passaggio 4.3.1
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza usando la formula della differenza di quadrati, dove e .
Passaggio 4.3.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Applica la proprietà distributiva.
Passaggio 4.3.2.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 4.3.2.2.1
Moltiplica per .
Passaggio 4.3.2.2.2
Moltiplica per .
Passaggio 4.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 4.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 4.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 4.4.3
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 4.4.4
Somma a entrambi i lati dell'equazione.
Passaggio 4.4.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.