Inserisci un problema...
Algebra Esempi
Passaggio 1
Per rimuovere il radicale del lato sinistro della diseguaglianza, eleva al quadrato entrambi i lati della diseguaglianza.
Passaggio 2
Passaggio 2.1
Usa per riscrivere come .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica .
Passaggio 2.2.1.1
Moltiplica gli esponenti in .
Passaggio 2.2.1.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.1.2
Elimina il fattore comune di .
Passaggio 2.2.1.1.2.1
Elimina il fattore comune.
Passaggio 2.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 2.2.1.2
Semplifica.
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3
Passaggio 3.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 3.2
Semplifica il lato sinistro.
Passaggio 3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 3.2.2
Dividi per .
Passaggio 3.3
Semplifica il lato destro.
Passaggio 3.3.1
Dividi per .
Passaggio 4
Passaggio 4.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4.2
Dividi per ciascun termine in e semplifica.
Passaggio 4.2.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 4.2.2
Semplifica il lato sinistro.
Passaggio 4.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.2.2.2
Dividi per .
Passaggio 4.2.3
Semplifica il lato destro.
Passaggio 4.2.3.1
Dividi per .
Passaggio 4.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 5
Usa ogni radice per creare gli intervalli di prova.
Passaggio 6
Passaggio 6.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.1.3
Il lato sinistro di non è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 6.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.2.3
Il lato sinistro non è uguale al lato destro, il che significa che l'affermazione è falsa.
Falso
Falso
Passaggio 6.3
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Falso
Falso
Falso
Passaggio 7
Poiché nessun numero rientra nell'intervallo, questa diseguaglianza non ha soluzione.
Nessuna soluzione