Masukkan soal...
Trigonometri Contoh
Langkah 1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2
Langkah 2.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 2.2
Gunakan sifat hasil bagi dari logaritma, .
Langkah 3
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4
Langkah 4.1
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 4.2
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 4.3
Sederhanakan.
Langkah 4.3.1
Sederhanakan pembilangnya.
Langkah 4.3.1.1
Naikkan menjadi pangkat .
Langkah 4.3.1.2
Kalikan .
Langkah 4.3.1.2.1
Kalikan dengan .
Langkah 4.3.1.2.2
Kalikan dengan .
Langkah 4.3.1.3
Tambahkan dan .
Langkah 4.3.1.4
Tulis kembali sebagai .
Langkah 4.3.1.4.1
Faktorkan dari .
Langkah 4.3.1.4.2
Tulis kembali sebagai .
Langkah 4.3.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 4.3.2
Kalikan dengan .
Langkah 4.3.3
Sederhanakan .
Langkah 4.4
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 4.4.1
Sederhanakan pembilangnya.
Langkah 4.4.1.1
Naikkan menjadi pangkat .
Langkah 4.4.1.2
Kalikan .
Langkah 4.4.1.2.1
Kalikan dengan .
Langkah 4.4.1.2.2
Kalikan dengan .
Langkah 4.4.1.3
Tambahkan dan .
Langkah 4.4.1.4
Tulis kembali sebagai .
Langkah 4.4.1.4.1
Faktorkan dari .
Langkah 4.4.1.4.2
Tulis kembali sebagai .
Langkah 4.4.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 4.4.2
Kalikan dengan .
Langkah 4.4.3
Sederhanakan .
Langkah 4.4.4
Ubah menjadi .
Langkah 4.5
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 4.5.1
Sederhanakan pembilangnya.
Langkah 4.5.1.1
Naikkan menjadi pangkat .
Langkah 4.5.1.2
Kalikan .
Langkah 4.5.1.2.1
Kalikan dengan .
Langkah 4.5.1.2.2
Kalikan dengan .
Langkah 4.5.1.3
Tambahkan dan .
Langkah 4.5.1.4
Tulis kembali sebagai .
Langkah 4.5.1.4.1
Faktorkan dari .
Langkah 4.5.1.4.2
Tulis kembali sebagai .
Langkah 4.5.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 4.5.2
Kalikan dengan .
Langkah 4.5.3
Sederhanakan .
Langkah 4.5.4
Ubah menjadi .
Langkah 4.6
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 5
Atur argumen dalam agar lebih kecil dari atau sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6
Langkah 6.1
Tentukan semua nilai di mana ungkapan berbalik dari negatif ke positif dengan mengatur setiap faktor agar sama dengan dan menyelesaikannya.
Langkah 6.2
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 6.3
Sederhanakan .
Langkah 6.3.1
Tulis kembali sebagai .
Langkah 6.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.3.3
Tambah atau kurang adalah .
Langkah 6.4
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 6.5
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 6.6
Sederhanakan.
Langkah 6.6.1
Sederhanakan pembilangnya.
Langkah 6.6.1.1
Naikkan menjadi pangkat .
Langkah 6.6.1.2
Kalikan .
Langkah 6.6.1.2.1
Kalikan dengan .
Langkah 6.6.1.2.2
Kalikan dengan .
Langkah 6.6.1.3
Tambahkan dan .
Langkah 6.6.1.4
Tulis kembali sebagai .
Langkah 6.6.1.4.1
Faktorkan dari .
Langkah 6.6.1.4.2
Tulis kembali sebagai .
Langkah 6.6.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.6.2
Kalikan dengan .
Langkah 6.6.3
Sederhanakan .
Langkah 6.7
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 6.7.1
Sederhanakan pembilangnya.
Langkah 6.7.1.1
Naikkan menjadi pangkat .
Langkah 6.7.1.2
Kalikan .
Langkah 6.7.1.2.1
Kalikan dengan .
Langkah 6.7.1.2.2
Kalikan dengan .
Langkah 6.7.1.3
Tambahkan dan .
Langkah 6.7.1.4
Tulis kembali sebagai .
Langkah 6.7.1.4.1
Faktorkan dari .
Langkah 6.7.1.4.2
Tulis kembali sebagai .
Langkah 6.7.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.7.2
Kalikan dengan .
Langkah 6.7.3
Sederhanakan .
Langkah 6.7.4
Ubah menjadi .
Langkah 6.8
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 6.8.1
Sederhanakan pembilangnya.
Langkah 6.8.1.1
Naikkan menjadi pangkat .
Langkah 6.8.1.2
Kalikan .
Langkah 6.8.1.2.1
Kalikan dengan .
Langkah 6.8.1.2.2
Kalikan dengan .
Langkah 6.8.1.3
Tambahkan dan .
Langkah 6.8.1.4
Tulis kembali sebagai .
Langkah 6.8.1.4.1
Faktorkan dari .
Langkah 6.8.1.4.2
Tulis kembali sebagai .
Langkah 6.8.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.8.2
Kalikan dengan .
Langkah 6.8.3
Sederhanakan .
Langkah 6.8.4
Ubah menjadi .
Langkah 6.9
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 6.10
Selesaikan setiap faktor untuk menemukan nilai di mana pernyataan nilai mutlaknya berubah dari negatif ke positif.
Langkah 6.11
Gabungkan penyelesaiannya.
Langkah 6.12
Tentukan domain dari .
Langkah 6.12.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.12.2
Selesaikan .
Langkah 6.12.2.1
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 6.12.2.2
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 6.12.2.3
Sederhanakan.
Langkah 6.12.2.3.1
Sederhanakan pembilangnya.
Langkah 6.12.2.3.1.1
Naikkan menjadi pangkat .
Langkah 6.12.2.3.1.2
Kalikan .
Langkah 6.12.2.3.1.2.1
Kalikan dengan .
Langkah 6.12.2.3.1.2.2
Kalikan dengan .
Langkah 6.12.2.3.1.3
Tambahkan dan .
Langkah 6.12.2.3.1.4
Tulis kembali sebagai .
Langkah 6.12.2.3.1.4.1
Faktorkan dari .
Langkah 6.12.2.3.1.4.2
Tulis kembali sebagai .
Langkah 6.12.2.3.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.12.2.3.2
Kalikan dengan .
Langkah 6.12.2.3.3
Sederhanakan .
Langkah 6.12.2.4
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 6.12.2.4.1
Sederhanakan pembilangnya.
Langkah 6.12.2.4.1.1
Naikkan menjadi pangkat .
Langkah 6.12.2.4.1.2
Kalikan .
Langkah 6.12.2.4.1.2.1
Kalikan dengan .
Langkah 6.12.2.4.1.2.2
Kalikan dengan .
Langkah 6.12.2.4.1.3
Tambahkan dan .
Langkah 6.12.2.4.1.4
Tulis kembali sebagai .
Langkah 6.12.2.4.1.4.1
Faktorkan dari .
Langkah 6.12.2.4.1.4.2
Tulis kembali sebagai .
Langkah 6.12.2.4.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.12.2.4.2
Kalikan dengan .
Langkah 6.12.2.4.3
Sederhanakan .
Langkah 6.12.2.4.4
Ubah menjadi .
Langkah 6.12.2.5
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 6.12.2.5.1
Sederhanakan pembilangnya.
Langkah 6.12.2.5.1.1
Naikkan menjadi pangkat .
Langkah 6.12.2.5.1.2
Kalikan .
Langkah 6.12.2.5.1.2.1
Kalikan dengan .
Langkah 6.12.2.5.1.2.2
Kalikan dengan .
Langkah 6.12.2.5.1.3
Tambahkan dan .
Langkah 6.12.2.5.1.4
Tulis kembali sebagai .
Langkah 6.12.2.5.1.4.1
Faktorkan dari .
Langkah 6.12.2.5.1.4.2
Tulis kembali sebagai .
Langkah 6.12.2.5.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.12.2.5.2
Kalikan dengan .
Langkah 6.12.2.5.3
Sederhanakan .
Langkah 6.12.2.5.4
Ubah menjadi .
Langkah 6.12.2.6
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 6.12.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 6.13
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 6.14
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Langkah 6.14.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 6.14.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.14.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.14.1.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 6.14.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 6.14.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.14.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.14.2.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
Benar
Benar
Langkah 6.14.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 6.14.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.14.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.14.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
Benar
Benar
Langkah 6.14.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 6.14.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.14.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.14.4.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 6.14.5
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Benar
Salah
Salah
Benar
Benar
Salah
Langkah 6.15
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau
Langkah 6.16
Gabungkan interval-intervalnya.
Langkah 7
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 8
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 9