Trigonometri Contoh

Selesaikan untuk x 2tan(x)^2sin(x)+tan(x)^2=0
Langkah 1
Sederhanakan sisi kiri dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 1.1.2
Terapkan kaidah hasil kali ke .
Langkah 1.1.3
Gabungkan dan .
Langkah 1.1.4
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Gabungkan dan .
Langkah 1.1.4.2
Naikkan menjadi pangkat .
Langkah 1.1.4.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.4.4
Tambahkan dan .
Langkah 1.1.5
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 1.1.6
Terapkan kaidah hasil kali ke .
Langkah 1.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Faktorkan dari .
Langkah 1.2.2
Kalikan dengan .
Langkah 1.2.3
Pisahkan pecahan.
Langkah 1.2.4
Konversikan dari ke .
Langkah 1.2.5
Bagilah dengan .
Langkah 1.2.6
Konversikan dari ke .
Langkah 2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Faktorkan dari .
Langkah 2.2
Kalikan dengan .
Langkah 2.3
Faktorkan dari .
Langkah 3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 4.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Tulis kembali sebagai .
Langkah 4.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 4.2.2.3
Tambah atau kurang adalah .
Langkah 4.2.3
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 4.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.4.1
Nilai eksak dari adalah .
Langkah 4.2.5
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 4.2.6
Tambahkan dan .
Langkah 4.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.7.4
Bagilah dengan .
Langkah 4.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Bagilah setiap suku di dengan .
Langkah 5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.2.2.2.1.2
Bagilah dengan .
Langkah 5.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2.3
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 5.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.1
Nilai eksak dari adalah .
Langkah 5.2.5
Fungsi sinus negatif pada kuadran ketiga dan keempat. Untuk menemukan penyelesaian kedua, kurangi penyelesaian dari , untuk mencari sudut acuan. Selanjutnya, tambahkan sudut acuan ini ke untuk mencari penyelesaian pada kuadran ketiga.
Langkah 5.2.6
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.6.1
Kurangi dengan .
Langkah 5.2.6.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 5.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2.7.4
Bagilah dengan .
Langkah 5.2.8
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.8.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 5.2.8.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.8.3
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.8.3.1
Gabungkan dan .
Langkah 5.2.8.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.8.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.8.4.1
Kalikan dengan .
Langkah 5.2.8.4.2
Kurangi dengan .
Langkah 5.2.8.5
Sebutkan sudut-sudut barunya.
Langkah 5.2.9
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 7
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat