Masukkan soal...
Trigonometri Contoh
Langkah 1
Substitusikan untuk .
Langkah 2
Tambahkan ke kedua sisi persamaan.
Langkah 3
Langkah 3.1
Terapkan sifat distributif.
Langkah 3.2
Sederhanakan.
Langkah 3.2.1
Kalikan dengan .
Langkah 3.2.2
Kalikan dengan .
Langkah 3.2.3
Batalkan faktor persekutuan dari .
Langkah 3.2.3.1
Batalkan faktor persekutuan.
Langkah 3.2.3.2
Tulis kembali pernyataannya.
Langkah 4
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 5
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 6
Langkah 6.1
Sederhanakan pembilangnya.
Langkah 6.1.1
Naikkan menjadi pangkat .
Langkah 6.1.2
Kalikan .
Langkah 6.1.2.1
Kalikan dengan .
Langkah 6.1.2.2
Kalikan dengan .
Langkah 6.1.3
Kurangi dengan .
Langkah 6.1.4
Tulis kembali sebagai .
Langkah 6.1.4.1
Faktorkan dari .
Langkah 6.1.4.2
Tulis kembali sebagai .
Langkah 6.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Sederhanakan .
Langkah 7
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 8
Substitusikan untuk .
Langkah 9
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 10
Langkah 10.1
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 10.2
Sederhanakan sisi kanannya.
Langkah 10.2.1
Evaluasi .
Langkah 10.3
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 10.4
Selesaikan .
Langkah 10.4.1
Hilangkan tanda kurung.
Langkah 10.4.2
Hilangkan tanda kurung.
Langkah 10.4.3
Tambahkan dan .
Langkah 10.5
Tentukan periode dari .
Langkah 10.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 10.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 10.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 10.5.4
Bagilah dengan .
Langkah 10.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 11
Langkah 11.1
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 11.2
Sederhanakan sisi kanannya.
Langkah 11.2.1
Evaluasi .
Langkah 11.3
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 11.4
Selesaikan .
Langkah 11.4.1
Hilangkan tanda kurung.
Langkah 11.4.2
Hilangkan tanda kurung.
Langkah 11.4.3
Tambahkan dan .
Langkah 11.5
Tentukan periode dari .
Langkah 11.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 11.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 11.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 11.5.4
Bagilah dengan .
Langkah 11.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 12
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 13
Langkah 13.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 13.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat