Trigonometri Contoh

Selesaikan untuk ? tan(x/2-pi/4)=1
Langkah 1
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Nilai eksak dari adalah .
Langkah 3
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.3
Tambahkan dan .
Langkah 3.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Faktorkan dari .
Langkah 3.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.2.1
Faktorkan dari .
Langkah 3.4.2.2
Batalkan faktor persekutuan.
Langkah 3.4.2.3
Tulis kembali pernyataannya.
Langkah 4
Karena pernyataan pada setiap sisi persamaan mempunyai penyebut yang sama, maka pembilangnya harus sama.
Langkah 5
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.1.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1.2.1
Gabungkan dan .
Langkah 6.1.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.1.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1.3.1
Pindahkan ke sebelah kiri .
Langkah 6.1.3.2
Tambahkan dan .
Langkah 6.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.3
Tambahkan dan .
Langkah 6.2.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.4.1
Faktorkan dari .
Langkah 6.2.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.4.2.1
Faktorkan dari .
Langkah 6.2.4.2.2
Batalkan faktor persekutuan.
Langkah 6.2.4.2.3
Tulis kembali pernyataannya.
Langkah 6.3
Karena pernyataan pada setiap sisi persamaan mempunyai penyebut yang sama, maka pembilangnya harus sama.
Langkah 7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.3
mendekati yang positif sehingga menghapus nilai mutlak
Langkah 7.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 7.5
Pindahkan ke sebelah kiri .
Langkah 8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
Langkah 9
Gabungkan jawabannya.
, untuk sebarang bilangan bulat