Prakalkulus Contoh

Selesaikan Menggunakan Matriks dengan Aturan Cramer 2x-y-4=0 , 3x+4y-12=0
,
Langkah 1
Move all of the variables to the left side of each equation.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.2
Tambahkan ke kedua sisi persamaan.
Langkah 2
Nyatakan sistem persamaan tersebut dalam bentuk matriks.
Langkah 3
Find the determinant of the coefficient matrix .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Write in determinant notation.
Langkah 3.2
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 3.3
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1.1
Kalikan dengan .
Langkah 3.3.1.2
Kalikan dengan .
Langkah 3.3.2
Tambahkan dan .
Langkah 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Langkah 5
Find the value of by Cramer's Rule, which states that .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Langkah 5.2
Find the determinant.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.2.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1.1
Kalikan dengan .
Langkah 5.2.2.1.2
Kalikan dengan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.3
Use the formula to solve for .
Langkah 5.4
Substitute for and for in the formula.
Langkah 6
Find the value of by Cramer's Rule, which states that .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Langkah 6.2
Find the determinant.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 6.2.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1.1
Kalikan dengan .
Langkah 6.2.2.1.2
Kalikan dengan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.3
Use the formula to solve for .
Langkah 6.4
Substitute for and for in the formula.
Langkah 7
Sebutkan penyelesaian untuk sistem persamaan.