Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=6(x-e^x)
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Terapkan sifat distributif.
Langkah 1.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Kalikan dengan .
Langkah 1.3.2.2
Kalikan dengan .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.3
Kurangi dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 4.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Terapkan sifat distributif.
Langkah 4.1.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.2.1
Kalikan dengan .
Langkah 4.1.3.2.2
Kalikan dengan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Bagilah setiap suku di dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2
Bagilah dengan .
Langkah 5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Bagilah dengan .
Langkah 5.4
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 5.5
Perluas sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 5.5.2
Log alami dari adalah .
Langkah 5.5.3
Kalikan dengan .
Langkah 5.6
Log alami dari adalah .
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Apa pun yang dinaikkan ke adalah .
Langkah 9.2
Kalikan dengan .
Langkah 10
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.1
Apa pun yang dinaikkan ke adalah .
Langkah 11.2.1.2
Kalikan dengan .
Langkah 11.2.2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.2.1
Kurangi dengan .
Langkah 11.2.2.2
Kalikan dengan .
Langkah 11.2.3
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
Langkah 13