Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=x/(x^2+3)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.2
Kalikan dengan .
Langkah 1.1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1
Tambahkan dan .
Langkah 1.1.2.6.2
Kalikan dengan .
Langkah 1.1.3
Naikkan menjadi pangkat .
Langkah 1.1.4
Naikkan menjadi pangkat .
Langkah 1.1.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.6
Tambahkan dan .
Langkah 1.1.7
Kurangi dengan .
Langkah 1.1.8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.8.1
Faktorkan dari .
Langkah 1.1.8.2
Tulis kembali sebagai .
Langkah 1.1.8.3
Faktorkan dari .
Langkah 1.1.8.4
Tulis kembali sebagai .
Langkah 1.1.8.5
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Selesaikan persamaan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.3.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.3.3.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.3.3.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kurangi dengan .
Langkah 5.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Naikkan menjadi pangkat .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.2.3
Naikkan menjadi pangkat .
Langkah 5.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.3.1
Bagilah dengan .
Langkah 5.2.3.2
Kalikan dengan .
Langkah 5.2.4
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.2.1.2
Kurangi dengan .
Langkah 6.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.3
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.3.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.3.1.1
Faktorkan dari .
Langkah 6.2.3.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.3.1.2.1
Faktorkan dari .
Langkah 6.2.3.1.2.2
Batalkan faktor persekutuan.
Langkah 6.2.3.1.2.3
Tulis kembali pernyataannya.
Langkah 6.2.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kurangi dengan .
Langkah 7.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Naikkan menjadi pangkat .
Langkah 7.2.2.2
Tambahkan dan .
Langkah 7.2.2.3
Naikkan menjadi pangkat .
Langkah 7.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.3.1
Bagilah dengan .
Langkah 7.2.3.2
Kalikan dengan .
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 9