Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.2.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.2.3
Pindahkan limit ke dalam eksponen.
Langkah 1.2.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.2.5
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 1.2.5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.6
Sederhanakan jawabannya.
Langkah 1.2.6.1
Sederhanakan setiap suku.
Langkah 1.2.6.1.1
Apa pun yang dinaikkan ke adalah .
Langkah 1.2.6.1.2
Kalikan dengan .
Langkah 1.2.6.2
Tambahkan dan .
Langkah 1.2.6.3
Kurangi dengan .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Evaluasi limitnya.
Langkah 1.3.1.1
Pindahkan limit ke dalam logaritma.
Langkah 1.3.1.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.3.1.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Langkah 1.3.3.1
Tambahkan dan .
Langkah 1.3.3.2
Log alami dari adalah .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.5
Evaluasi .
Langkah 3.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.5.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.5.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.5.2.3
Ganti semua kemunculan dengan .
Langkah 3.5.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.5.5
Kalikan dengan .
Langkah 3.5.6
Pindahkan ke sebelah kiri .
Langkah 3.5.7
Tulis kembali sebagai .
Langkah 3.5.8
Kalikan dengan .
Langkah 3.5.9
Kalikan dengan .
Langkah 3.6
Tambahkan dan .
Langkah 3.7
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.7.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.7.2
Turunan dari terhadap adalah .
Langkah 3.7.3
Ganti semua kemunculan dengan .
Langkah 3.8
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.11
Tambahkan dan .
Langkah 3.12
Kalikan dengan .
Langkah 4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 6
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 7
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 8
Pindahkan limit ke dalam eksponen.
Langkah 9
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 10
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 11
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 12
Langkah 12.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 12.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 13
Langkah 13.1
Apa pun yang dinaikkan ke adalah .
Langkah 13.2
Tambahkan dan .
Langkah 13.3
Tambahkan dan .
Langkah 13.4
Kalikan dengan .