Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal 3cos(x)-cos(x)^3
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Turunan dari terhadap adalah .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.2.3
Ganti semua kemunculan dengan .
Langkah 2.3.3
Turunan dari terhadap adalah .
Langkah 2.3.4
Kalikan dengan .
Langkah 2.3.5
Kalikan dengan .
Langkah 2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Susun kembali suku-suku.
Langkah 2.4.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Faktorkan dari .
Langkah 2.4.2.2
Faktorkan dari .
Langkah 2.4.2.3
Faktorkan dari .
Langkah 2.4.3
Susun kembali dan .
Langkah 2.4.4
Tulis kembali sebagai .
Langkah 2.4.5
Faktorkan dari .
Langkah 2.4.6
Faktorkan dari .
Langkah 2.4.7
Tulis kembali sebagai .
Langkah 2.4.8
Terapkan identitas pythagoras.
Langkah 2.4.9
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.9.1
Pindahkan .
Langkah 2.4.9.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.9.2.1
Naikkan menjadi pangkat .
Langkah 2.4.9.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.4.9.3
Tambahkan dan .
Langkah 2.4.10
Kalikan dengan .
Langkah 3
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Kalikan dengan .
Langkah 3.4
Turunan dari terhadap adalah .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Bagilah setiap suku di dengan .
Langkah 5.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Batalkan faktor persekutuan.
Langkah 5.2.1.2
Bagilah dengan .
Langkah 5.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Bagilah dengan .
Langkah 6
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 7
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Tulis kembali sebagai .
Langkah 7.2
Tarik suku-suku keluar dari bawah akar, dengan asumsi bilangan-bilangan riil.
Langkah 8
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 9
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Nilai eksak dari adalah .
Langkah 10
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 11
Kurangi dengan .
Langkah 12
Penyelesaian untuk persamaan .
Langkah 13
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 14
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 14.1
Nilai eksak dari adalah .
Langkah 14.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 14.3
Kalikan dengan .
Langkah 14.4
Nilai eksak dari adalah .
Langkah 14.5
Kalikan dengan .
Langkah 15
Karena setidaknya ada satu titik di atau turunan kedua yang tidak terdefinisikan, lakukan uji turunan pertama.
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 15.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 15.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 15.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 15.2.2.1
Evaluasi .
Langkah 15.2.2.2
Naikkan menjadi pangkat .
Langkah 15.2.2.3
Kalikan dengan .
Langkah 15.2.2.4
Jawaban akhirnya adalah .
Langkah 15.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 15.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 15.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 15.3.2.1
Evaluasi .
Langkah 15.3.2.2
Naikkan menjadi pangkat .
Langkah 15.3.2.3
Kalikan dengan .
Langkah 15.3.2.4
Jawaban akhirnya adalah .
Langkah 15.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 15.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 15.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 15.4.2.1
Evaluasi .
Langkah 15.4.2.2
Naikkan menjadi pangkat .
Langkah 15.4.2.3
Kalikan dengan .
Langkah 15.4.2.4
Jawaban akhirnya adalah .
Langkah 15.5
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
Langkah 15.6
Karena turunan pertamanya diubah tandanya dari negatif menjadi positif di sekitar , maka adalah minimum lokal.
adalah minimum lokal
Langkah 15.7
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
adalah minimum lokal
adalah maksimum lokal
adalah minimum lokal
Langkah 16