Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.1.1.3
Ganti semua kemunculan dengan .
Langkah 2.1.2
Diferensialkan.
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Sederhanakan pernyataannya.
Langkah 2.1.2.3.1
Kalikan dengan .
Langkah 2.1.2.3.2
Pindahkan ke sebelah kiri .
Langkah 2.2
Turunan pertama dari terhadap adalah .
Langkah 3
Langkah 3.1
Buat turunan pertamanya agar sama dengan .
Langkah 3.2
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 3.3
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 3.4
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 4
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis
Langkah 5
Tidak ada titik yang membuat turunan sama dengan atau tidak terdefinisi. Interval untuk memeriksa apakah naik atau turun yaitu .
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Kalikan dengan .
Langkah 6.2.2
Jawaban akhirnya adalah .
Langkah 7
Hasil dari mensubstitusikan ke dalam adalah , yang mana positif sehingga grafiknya meningkat pada interval .
Meningkat pada karena
Langkah 8
Meningkat selama interval berarti bahwa fungsinya selalu meningkat.
Selalu Meningkat
Langkah 9