Kalkulus Contoh

Tentukan Maks dan Min Mutlak di sepanjang Interval f(x)=e^x-x , -2<=x<=2
,
Langkah 1
Tentukan titik kritisnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3.3
Kalikan dengan .
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Buat turunan pertamanya agar sama dengan .
Langkah 1.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.3
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 1.2.4
Perluas sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 1.2.4.2
Log alami dari adalah .
Langkah 1.2.4.3
Kalikan dengan .
Langkah 1.2.5
Log alami dari adalah .
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 1.4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.1
Substitusikan untuk .
Langkah 1.4.1.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.2.1
Apa pun yang dinaikkan ke adalah .
Langkah 1.4.1.2.2
Kurangi dengan .
Langkah 1.4.2
Tuliskan semua titik-titiknya.
Langkah 2
Periksa pada titik interval.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Substitusikan untuk .
Langkah 2.1.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.1.2.2
Kalikan dengan .
Langkah 2.2
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Substitusikan untuk .
Langkah 2.2.2
Kalikan dengan .
Langkah 2.3
Tuliskan semua titik-titiknya.
Langkah 3
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Maksimum Mutlak:
Minimum Mutlak:
Langkah 4