Kalkulus Contoh

Tentukan Kecekungannya f(x)=e^(-2.5x^2)
Langkah 1
Find the values where the second derivative is equal to .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 1.1.1.1.3
Ganti semua kemunculan dengan .
Langkah 1.1.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Kalikan dengan .
Langkah 1.1.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.1
Susun kembali faktor-faktor dari .
Langkah 1.1.1.3.2
Susun kembali faktor-faktor dalam .
Langkah 1.1.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 1.1.2.3.3
Ganti semua kemunculan dengan .
Langkah 1.1.2.4
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.4.3
Kalikan dengan .
Langkah 1.1.2.5
Naikkan menjadi pangkat .
Langkah 1.1.2.6
Naikkan menjadi pangkat .
Langkah 1.1.2.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.2.8
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.8.1
Tambahkan dan .
Langkah 1.1.2.8.2
Pindahkan ke sebelah kiri .
Langkah 1.1.2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.10
Kalikan dengan .
Langkah 1.1.2.11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.11.1
Terapkan sifat distributif.
Langkah 1.1.2.11.2
Kalikan dengan .
Langkah 1.1.2.11.3
Susun kembali suku-suku.
Langkah 1.1.2.11.4
Susun kembali faktor-faktor dalam .
Langkah 1.1.3
Turunan kedua dari terhadap adalah .
Langkah 1.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Atur turunan keduanya sama dengan .
Langkah 1.2.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1.1
Faktorkan dari .
Langkah 1.2.2.1.2
Faktorkan dari .
Langkah 1.2.2.1.3
Faktorkan dari .
Langkah 1.2.2.2
Tulis kembali sebagai .
Langkah 1.2.2.3
Tulis kembali sebagai .
Langkah 1.2.2.4
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.4.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 1.2.2.4.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 1.2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 1.2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Atur sama dengan .
Langkah 1.2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 1.2.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 1.2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.1
Atur sama dengan .
Langkah 1.2.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 1.2.5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.5.2.2.2.1.2
Bagilah dengan .
Langkah 1.2.5.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.2.2.3.1
Bagilah dengan .
Langkah 1.2.6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.1
Atur sama dengan .
Langkah 1.2.6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.6.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.2.2.1
Bagilah setiap suku di dengan .
Langkah 1.2.6.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.6.2.2.2.1.2
Bagilah dengan .
Langkah 1.2.6.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.2.2.3.1
Bagilah dengan .
Langkah 1.2.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 2
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 3
Buat interval di sekitar nilai saat turunan keduanya bernilai nol atau tak hingga.
Langkah 4
Substitusikan sebarang bilangan dari interval ke dalam turunan keduanya, lalu evaluasi untuk menentukan kecekungan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Naikkan menjadi pangkat .
Langkah 4.2.1.2
Kalikan dengan .
Langkah 4.2.1.3
Naikkan menjadi pangkat .
Langkah 4.2.1.4
Kalikan dengan .
Langkah 4.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.2.1.6
Gabungkan dan .
Langkah 4.2.1.7
Ganti dengan nilai perkiraan.
Langkah 4.2.1.8
Naikkan menjadi pangkat .
Langkah 4.2.1.9
Bagilah dengan .
Langkah 4.2.1.10
Naikkan menjadi pangkat .
Langkah 4.2.1.11
Kalikan dengan .
Langkah 4.2.1.12
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.2.1.13
Gabungkan dan .
Langkah 4.2.1.14
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2.1.15
Ganti dengan nilai perkiraan.
Langkah 4.2.1.16
Naikkan menjadi pangkat .
Langkah 4.2.1.17
Bagilah dengan .
Langkah 4.2.1.18
Kalikan dengan .
Langkah 4.2.2
Kurangi dengan .
Langkah 4.2.3
Jawaban akhirnya adalah .
Langkah 4.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 5
Substitusikan sebarang bilangan dari interval ke dalam turunan keduanya, lalu evaluasi untuk menentukan kecekungan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.2.1.4
Kalikan dengan .
Langkah 5.2.1.5
Apa pun yang dinaikkan ke adalah .
Langkah 5.2.1.6
Kalikan dengan .
Langkah 5.2.1.7
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.2.1.8
Kalikan dengan .
Langkah 5.2.1.9
Apa pun yang dinaikkan ke adalah .
Langkah 5.2.1.10
Kalikan dengan .
Langkah 5.2.2
Kurangi dengan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Grafiknya cekung ke bawah pada interval karena negatif.
Cekung ke bawah pada karena negatif
Cekung ke bawah pada karena negatif
Langkah 6
Substitusikan sebarang bilangan dari interval ke dalam turunan keduanya, lalu evaluasi untuk menentukan kecekungan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.6
Gabungkan dan .
Langkah 6.2.1.7
Ganti dengan nilai perkiraan.
Langkah 6.2.1.8
Naikkan menjadi pangkat .
Langkah 6.2.1.9
Bagilah dengan .
Langkah 6.2.1.10
Naikkan menjadi pangkat .
Langkah 6.2.1.11
Kalikan dengan .
Langkah 6.2.1.12
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.13
Gabungkan dan .
Langkah 6.2.1.14
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.1.15
Ganti dengan nilai perkiraan.
Langkah 6.2.1.16
Naikkan menjadi pangkat .
Langkah 6.2.1.17
Bagilah dengan .
Langkah 6.2.1.18
Kalikan dengan .
Langkah 6.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 7
Grafiknya cekung ke bawah ketika turunan keduanya negatif dan cekung ke atas ketika turunan keduanya positif.
Cekung ke atas pada karena positif
Cekung ke bawah pada karena negatif
Cekung ke atas pada karena positif
Langkah 8