Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Diferensialkan.
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Evaluasi .
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.1.4
Evaluasi .
Langkah 1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.4.3
Kalikan dengan .
Langkah 1.1.5
Evaluasi .
Langkah 1.1.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.5.3
Kalikan dengan .
Langkah 1.2
Tentukan turunan keduanya.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.2
Evaluasi .
Langkah 1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2.3
Kalikan dengan .
Langkah 1.2.3
Evaluasi .
Langkah 1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3.3
Kalikan dengan .
Langkah 1.2.4
Evaluasi .
Langkah 1.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4.3
Kalikan dengan .
Langkah 1.2.5
Evaluasi .
Langkah 1.2.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.5.3
Kalikan dengan .
Langkah 1.2.6
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.2.6.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.6.2
Tambahkan dan .
Langkah 1.3
Turunan kedua dari terhadap adalah .
Langkah 2
Langkah 2.1
Atur turunan keduanya sama dengan .
Langkah 2.2
Gambarkan setiap sisi persamaan. Penyelesaiannya adalah nilai x dari titik perpotongan.
Langkah 3
Langkah 3.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.1.2
Sederhanakan hasilnya.
Langkah 3.1.2.1
Sederhanakan setiap suku.
Langkah 3.1.2.1.1
Naikkan menjadi pangkat .
Langkah 3.1.2.1.2
Naikkan menjadi pangkat .
Langkah 3.1.2.1.3
Kalikan dengan .
Langkah 3.1.2.1.4
Naikkan menjadi pangkat .
Langkah 3.1.2.1.5
Kalikan dengan .
Langkah 3.1.2.1.6
Naikkan menjadi pangkat .
Langkah 3.1.2.1.7
Kalikan dengan .
Langkah 3.1.2.1.8
Kalikan dengan .
Langkah 3.1.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.1.2.2.1
Kurangi dengan .
Langkah 3.1.2.2.2
Tambahkan dan .
Langkah 3.1.2.2.3
Tambahkan dan .
Langkah 3.1.2.2.4
Tambahkan dan .
Langkah 3.1.2.3
Jawaban akhirnya adalah .
Langkah 3.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.3
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.3.2
Sederhanakan hasilnya.
Langkah 3.3.2.1
Sederhanakan setiap suku.
Langkah 3.3.2.1.1
Naikkan menjadi pangkat .
Langkah 3.3.2.1.2
Naikkan menjadi pangkat .
Langkah 3.3.2.1.3
Kalikan dengan .
Langkah 3.3.2.1.4
Naikkan menjadi pangkat .
Langkah 3.3.2.1.5
Kalikan dengan .
Langkah 3.3.2.1.6
Naikkan menjadi pangkat .
Langkah 3.3.2.1.7
Kalikan dengan .
Langkah 3.3.2.1.8
Kalikan dengan .
Langkah 3.3.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.3.2.2.1
Kurangi dengan .
Langkah 3.3.2.2.2
Kurangi dengan .
Langkah 3.3.2.2.3
Tambahkan dan .
Langkah 3.3.2.2.4
Kurangi dengan .
Langkah 3.3.2.3
Jawaban akhirnya adalah .
Langkah 3.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.5
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.5.2
Sederhanakan hasilnya.
Langkah 3.5.2.1
Sederhanakan setiap suku.
Langkah 3.5.2.1.1
Naikkan menjadi pangkat .
Langkah 3.5.2.1.2
Naikkan menjadi pangkat .
Langkah 3.5.2.1.3
Kalikan dengan .
Langkah 3.5.2.1.4
Naikkan menjadi pangkat .
Langkah 3.5.2.1.5
Kalikan dengan .
Langkah 3.5.2.1.6
Naikkan menjadi pangkat .
Langkah 3.5.2.1.7
Kalikan dengan .
Langkah 3.5.2.1.8
Kalikan dengan .
Langkah 3.5.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.5.2.2.1
Kurangi dengan .
Langkah 3.5.2.2.2
Kurangi dengan .
Langkah 3.5.2.2.3
Tambahkan dan .
Langkah 3.5.2.2.4
Kurangi dengan .
Langkah 3.5.2.3
Jawaban akhirnya adalah .
Langkah 3.6
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.7
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 4
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan setiap suku.
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Naikkan menjadi pangkat .
Langkah 5.2.1.4
Kalikan dengan .
Langkah 5.2.1.5
Kalikan dengan .
Langkah 5.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 5.2.2.1
Kurangi dengan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.2.3
Tambahkan dan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.2.3
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan setiap suku.
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.1.4
Kalikan dengan .
Langkah 7.2.1.5
Kalikan dengan .
Langkah 7.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 7.2.2.1
Kurangi dengan .
Langkah 7.2.2.2
Kurangi dengan .
Langkah 7.2.2.3
Tambahkan dan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan setiap suku.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.1.5
Kalikan dengan .
Langkah 8.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 8.2.2.1
Kurangi dengan .
Langkah 8.2.2.2
Kurangi dengan .
Langkah 8.2.2.3
Tambahkan dan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Langkah 10