Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan ( log alami dari x)/x
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.2
Turunan dari terhadap adalah .
Langkah 2.1.3
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1
Gabungkan dan .
Langkah 2.1.3.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.2.1
Batalkan faktor persekutuan.
Langkah 2.1.3.2.2
Tulis kembali pernyataannya.
Langkah 2.1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.4
Kalikan dengan .
Langkah 2.2
Turunan pertama dari terhadap adalah .
Langkah 3
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Buat turunan pertamanya agar sama dengan .
Langkah 3.2
Atur agar pembilangnya sama dengan nol.
Langkah 3.3
Selesaikan persamaan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.3.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Bagilah setiap suku di dengan .
Langkah 3.3.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.3.2.2.2
Bagilah dengan .
Langkah 3.3.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.3.1
Bagilah dengan .
Langkah 3.3.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.3.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.3.5
Tulis kembali persamaan tersebut sebagai .
Langkah 4
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 5
Tentukan di mana turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 5.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Tulis kembali sebagai .
Langkah 5.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5.2.2.3
Tambah atau kurang adalah .
Langkah 5.3
Atur argumen dalam agar lebih kecil dari atau sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 5.4
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 6
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 7
Kecualikan interval-intervalnya yang tidak ada di dalam domainnya.
Langkah 8
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Naikkan menjadi pangkat .
Langkah 8.2.2
Ganti dengan nilai perkiraan.
Langkah 8.2.3
Basis log dari adalah sekitar .
Langkah 8.2.4
Kalikan dengan .
Langkah 8.2.5
Kurangi dengan .
Langkah 8.2.6
Bagilah dengan .
Langkah 8.2.7
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Kecualikan interval-intervalnya yang tidak ada di dalam domainnya.
Langkah 10
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Naikkan menjadi pangkat .
Langkah 10.2.2
Ganti dengan nilai perkiraan.
Langkah 10.2.3
Basis log dari adalah sekitar .
Langkah 10.2.4
Kalikan dengan .
Langkah 10.2.5
Kurangi dengan .
Langkah 10.2.6
Bagilah dengan .
Langkah 10.2.7
Jawaban akhirnya adalah .
Langkah 10.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 11
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 12